Generation of monocytes-derived dendritic cells from chicken blood for in vitro studies

Commonly used acronym: DENDRICHICK
Created on: 25-04-2022 - **Last modified on:** 17-05-2022

SCOPE OF THE METHOD

<table>
<thead>
<tr>
<th>The Method relates to</th>
<th>Animal health</th>
</tr>
</thead>
</table>
| The Method is situated in | Regulatory use - Routine production,
| | Translational - Applied Research |
| Type of method | In vitro - Ex vivo |
| This method makes use of | Animal derived cells / tissues / organs |
| Species from which cells/tissues/organs are derived | Gallus gallus domesticus |
| Type of cells/tissues/organs | Blood |

DESCRIPTION

Method keywords

Monocytes
Method description

The purpose of the present development is to use avian MoDCs to implement a cellular platform to increase understanding of the immune responses induced by various antigens of interest (e.g. vaccine candidates) and evaluate their immunogenic potential. Considering the difficulty to work on dendritic cells (DCs) isolated ex vivo, we developed a protocol for using in vitro-generated chicken monocyte-derived dendritic cells (MoDCs). Plastic-adherent peripheral blood mononuclear cells (PBMCs) isolated from specific-pathogen free (SPF) chickens are cultured with GM-CSF and IL-4 for 5 days at 41°C in 5% CO2 atmosphere. Following antigen-induced maturation (e.g. LPS, polyinosinic-polycytidylic acid, viral antigens, etc.), typical DC morphology is confirmed by microscope. The endocytic capacity and the expression of surface expression of mannose receptor C-type 1-like B, MHC-II, myeloid markers CD11c, DEC205, and co-stimulatory molecules CD40, CD80, CD86 by MoDCs at different maturation states are assessed by flow cytometry.

Lab equipment

Biosafety cabinet,
Cell incubator,
Microscope,
Centrifuge, Flow cytometer.

Method status

Still in development

PROS, CONS & FUTURE POTENTIAL

Advantages

- Poorly invasive (MoDCs used in place of bone marrow-derived DCs);
- Makes it possible to assess the response to an antigen in a large number of individuals and thus evaluate individual variability.

Challenges

Antibodies for cell characterization are not all commercially available.

Future & Other applications

- Selection of immunopotentiating agents (e.g. adjuvants) during vaccine development;
- Antigen-pulsed MoDCs will be co-cultured with naïve purified T cells to characterize cell-mediated responses triggered by vaccine candidates *in vitro*.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

References

- Tapia-Calle G, Stoel M, de Vries-Idema J, Huckriede A. Distinctive Responses in an *In Vitro* Human Dendritic Cell-Based System upon Stimulation with Different Influenza
https://doi.org/10.3390/vaccines5030021.
https://doi.org/10.1016/j.vetimm.2018.01.009.

Associated documents

2022_RE-Place_protocol.pdf

PARTNERS AND COLLABORATIONS

Organisation
Name of the organisation Sciensano
Department Avian Virology and Immunology
Country Belgium
Geographical Area

Brussels
Region

Coordinated by

Financed by