Human Intestinal Enteroids as a model for viral infection

Created on: 26-01-2023 - Last modified on: 27-01-2023

Contact person
Joana Rocha-Pereira

Organisation
Name of the organisation Katholieke Universiteit Leuven (KUL)
Department Microbiology, Immunology & Transplantation
Country Belgium

SCOPE OF THE METHOD

<table>
<thead>
<tr>
<th>The Method relates to</th>
<th>Human health</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Method is situated in</td>
<td>Basic Research, Translational - Applied Research</td>
</tr>
<tr>
<td>Type of method</td>
<td>In vitro - Ex vivo</td>
</tr>
</tbody>
</table>

DESCRIPTION

Method keywords
organoids
3D culture
ECM
Transwell

Scientific area keywords
Intestinal organoids
gastroenteric viruses
gastroenteric infection
viral infection
co-culture

Method description
Human Intestinal Organoids (HIOs) are in vitro 3D cell cultures arranged in a crypt-villus structure that incorporate many physiological features of the intestinal epithelium, including the presence of different cell populations (enterocytes, goblet cells, enteroendocrine and Paneth cells). HIOs can be generated from isolated crypts that contained the intestinal stem cells from small intestinal primary tissue (Enteroids) or they can be generated from pluripotent stem cells (Organoids). HIOs have emerged as an unique opportunity to study hard-to-cultivate enteric viruses in vitro and better understand their biology. We use human small intestine tissue-derived organoids (enteroids) that are 3D cultured in ECM (matrigel) in a growth medium rich in Wnt3, R-spondin and Noggin. For viral infection several approaches can be used a) differentiation of enteroids in 3D and infection with virus in suspension; b) seeding of enteroid single cell suspension in collagen coated plates or c) in transwell inserts that allow co-culture of this enteroids with other cells of interest (eg. Immune cells). The 3D infection of enteroids has been a successful model to evaluate the antiviral activity of compounds and an excellent opportunity to push antiviral drug discovery to the next level.

Lab equipment
- Biosafety cabinet
- CO2 cell incubator
- Refrigerated centrifuge
- Microscope

Method status
Published in peer reviewed journal

PROS, CONS & FUTURE POTENTIAL

Advantages
Enteroids preserve the degree and diversity of glycosylation on histo-blood group
antigens (HBGAs) of the donor patient, that is related to the activity of fucosyltransferase 2 gene (FUT2), a crucial genetic factor for susceptibility to some gastroenteric viruses like HuNoV and HRV, allowing for the first time the in vitro replication of some virus strains.

Challenges

- Enteroids are composed of only epithelial cell types lacking complex mesenchymal heterogeneity and architecture, vasculature, neuronal connections and interaction with immune cells and the intestinal microbial flora.
- Organoid culture requires specialized training to manipulate ECM and due to ECM's characteristics automatization is difficult.
- Medium and related reagents are rather expensive.

Modifications

- Co-culture with other cell-types is being explored.

Future & Other applications

- Enteroids are currently being used as a model for antiviral drug discovery. Optimization of methods for higher throughput are ongoing.
- Further interaction with immune cells to study the epithelial immune barrier function in the presence of pathogens and co-culture with other organ-derived organoids will be studied.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

References

