

3D iPSC-chondrocyte model

Created on: 13-06-2024 - Last modified on: 07-08-2025

Contact person

Pauline De Kinderen

Organisation

Name of the organisation University of Antwerp (UAntwerpen)

Department Center of Medical Genetics

Country Belgium

Geographical Area Flemish Region

SCOPE OF THE METHOD

The Method relates to	Human health
The Method is situated in	Basic Research, Translational - Applied Research
Type of method	In vitro - Ex vivo
Specify the type of cells/tissues/organs	3D IPSC-derived chondrocyte pellets/ IPSC-derived cartilage tissue

DESCRIPTION

Method keywords

IPSC reprogramming

IPSC-MC differentiation

flow cytometry

Chondrogenesis of iPSCs

immunohistochemical staining

qPCR assay

western blot

Scientific area keywords

Skeletal dysplasias

IPSC research

Method description

Aim: To model cartilage-related disorders in a human-specific context for the investigation of disease mechanisms and the screening of potential therapeutics. Technique:

Fibroblasts and/or peripheral blood mononuclear cells (PBMCs) from both healthy donors and patients are reprogrammed into induced pluripotent stem cells (iPSCs). These iPSCs are first differentiated into mesenchymal-like cells and subsequently into 3D chondrocyte pellet cultures consisting of a mixture of both proliferating and hypertrophic chondrocytes similar to growth plate cartilage.

Lab equipment

- Laminar flow hood and incubator preferably in a dedicated stem cell lab.
- Flow cytometer to validate the mesenchymal-like cells for human mesenchymal stem cell markers.
- Real-Time PCR machine and immunostaining equipment for validation of the cartilage tissues.

Method status

Internally validated

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

Coordinated by

