

# Patient derived tumoroid to model rectal cancer under radiotherapy in a microphysiological system

Created on: 09-09-2025 - Last modified on: 09-09-2025

# **Contact person**

Eloïse Bouges

# **Organisation**

Name of the organisation Belgian Nuclear Research Centre

**Country** Belgium

Geographical Area Flemish Region

# SCOPE OF THE METHOD

| The Method relates to                    | Human health                          |
|------------------------------------------|---------------------------------------|
| The Method is situated in                | Translational - Applied Research      |
| Type of method                           | In vitro - Ex vivo                    |
| Specify the type of cells/tissues/organs | Patient derived rectal tumor organoid |

# **DESCRIPTION**

**Method keywords** 

colorectal

cancer

Microphysiological systems

Gut epithelium Organoid

# Scientific area keywords

Radiotherapy

in vitro

probiotics

inflammation

cytotoxicity

cancer treatment

Disease modelling

#### **Method description**

Colorectal cancer is the third most prevalent cancer worldwide, with radiotherapy being a common treatment. Existing models of the gastrointestinal tract, including mouse and 2D immortalized human cell culture models, lack the combination of human representability and radiotoxicity. This study seeks to develop a human *in vitro* rectal cancer model representing radiotherapy treatment, using patient-derived tumor organoids to form monolayers. The anticipated cellular heterogeneity of organoid allows for a closer representation of the rectal physiology specificity and enables disease modeling. To give access to both the apical and basolateral sides and to enable integration into a mesofluidic microphysiological system (MPS) monolayers are seeded from the tumor organoid culture. This allows culturing in continuously perfused wells, recreating shear forces at play between the rectal tissue and the lumen. The monolayers are put under a radiotherapy set up, modelling fragmented irradiations.

# Lab equipment

- Cell culture facility
- CN Bio Physiomimix OOCMicrophysiological system

#### **Method status**

Still in development

# PROS, CONS & FUTURE POTENTIAL

# **Advantages**

Beyond giving insight into radiotoxicity mechanisms, this model provides a platform for deeper understanding of underlying biological mechanisms of rectal cancer. The aim is to bridge the gap between laboratory work and clinical treatment, addressing the lack of human representability to ultimately improve patients' quality of life.

# REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

### Links

Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotox...

Coordinated by







Financed by

