Fabrication of microfluidic tools for manipulation and analysis of (single) cells

SCOPE OF THE METHOD

<table>
<thead>
<tr>
<th>The Method relates to</th>
<th>Animal health, Environment, Human health</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Method is situated in</td>
<td>Basic Research, Translational - Applied Research</td>
</tr>
<tr>
<td>Type of method</td>
<td>In vitro - Ex vivo</td>
</tr>
<tr>
<td>This method makes use of</td>
<td>Other (e.g. bacteria): Several types of cells can be manipulated and studied, ranging from bacterial cells to yeast cells, animal cells and even human cells</td>
</tr>
</tbody>
</table>

DESCRIPTION

Method keywords
Microfabrication
Molding
Imprinting
Single cell manipulation
Single cell analysis
High-throughput

Scientific area keywords
Lab-on-a-chip
Droplet-based microfluidics
Method description

Design and fabrication of microfluidic devices that allow manipulation and analysis of (single) cells. Droplet-based as well as digital microfluidics can be applied and are suitable for a wide variety of (non-adherent) cells. Different materials can be used for the fabrication of the microfluidic devices (PDMS, OSTE+, glass combined with Teflon, ...), depending on the type of microfluidics required and their compatibility with the cells. Interesting (single) cells, seeded in either droplets or microwells, can be manipulated and collected for analysis, e.g. based on their reaction towards certain stimuli. As such, these platforms have been used already for, among others, cytotoxicity studies of single yeast cells and manipulation of single human cells using optical tweezers to allow sequencing on the single cell level.

Lab equipment

Method status

Still in development
Published in peer reviewed journal

PROS, CONS & FUTURE POTENTIAL

Advantages

Microfluidic-based manipulation and analysis of cells allows high-throughput (single) cell studies with low sample and reagent consumption. Cells of interest can be collected easily in order to enable further analysis on the single cell level, thereby revealing new insights in cell behavior or composition.

Challenges

Most current microfluidic setups still require additional devices for liquid manipulation, such as microfluidic pumps, and signal analysis, such as microscopes. Nevertheless, for studies performed in a research environment, several easy-to-use
devices are readily available.

Modifications

The microfluidic devices can be designed to fit the specific needs.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

Associated documents

Links

Website KU Leuven - Biosensors group

PARTNERS AND COLLABORATIONS

Organisation
Name of the organisation KU Leuven
Department Department of Biosystems - Biosensors group
Country Belgium
Geographical Area Flemish Region