Aneurysms - Diagnosis and Personalized Treatment

Commonly used acronym: ADAPT


Contact person

Nele Famaey

Organisation

Name of the organisation Katholieke Universiteit Leuven (KUL)
Department Mechanical Engineering
Country Belgium
Geographical Area Flemish Region

Name of the organisation Katholieke Universiteit Leuven (KUL)
Department Cardiovascular Surgery
Country Belgium
Geographical Area Flemish Region

Partners and collaborations

Katholieke Universiteit Leuven (KUL), Katholieke Universiteit Leuven (KUL), Katholieke Universiteit Leuven (KUL)

SCOPE OF THE METHOD

<table>
<thead>
<tr>
<th>The Method relates to</th>
<th>Human health</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Method is situated in</td>
<td>Translational - Applied Research</td>
</tr>
<tr>
<td>Type of method</td>
<td>In silico</td>
</tr>
</tbody>
</table>

DESCRIPTION
Method keywords
aneurysm
blood vessel
finite element modeling
tensile testing

Scientific area keywords
continuum mechanics
cardiovascular disorders
mechanical testing
nonlinear finite element analysis

Method description
Aortic aneurysms consist of a localized dilatation of the aorta resulting from compromised structural integrity and are characterized by a diameter increase of at least 50% compared to a reference diameter. When left untreated, aneurysms tend to progressively enlarge, with an increased risk of catastrophic events, i.e. rupture or dissection. Given the dangers and expenses related to surgery, risk stratification is crucial. The current criterion provides a rough estimate of the rupture risk of aneurysms; however, it has been shown that adverse events can occur in aneurysms not meeting the surgery criteria, while a large aneurysm may remain stable for the patient's lifetime. We propose a biomechanics-based approach, in which the peak wall stress is calculated and compared to the aneurysm wall strength. CT scanning, uniaxial tensile testing, planar biaxial tensile testing, microstructural analysis and finite element modeling are needed to retrospectively estimate patient-specific values for peak wall stress and wall strength. Our current research is directed at correlating these retrospective findings to non-invasive patient parameters (general patient health parameters as well as compliance estimates from time-resolved CT scanning), such that a prospective risk index can be defined.

Lab equipment
Planar biaxial testing device time-resolved CT scan.

Method status
Still in development
Published in peer reviewed journal

PROS, CONS & FUTURE POTENTIAL

Advantages
The method will allow a non-invasive estimation of aneurysm rupture risk with increased predictive potential than the current geometry-based criterion.

Challenges
The method is sensitive to patient-specific parameters that can only be obtained with a substantial degree of uncertainty.

Modifications
The method is currently being expanded to also predict aneurysm growth for patients that do not yet meet the criterion for surgery.

REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

References
Smoljkic M, Verbrugghe P, Larsson M, Widman E, Fehervary H, D’hooge J, Vander Sloten J, Famaey N. Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery Medical Engineering & Physics Mar 2018 (Journal article)

Links

Farotto 2018
Smoljkic 2018
Smoljkic 2017
Smoljkic 2015