

#### Mimicking early Batrachochytrium dendrobatidis-host interactions using A6 cells

Created on: 10-01-2020 - Last modified on: 10-01-2020

#### Contact person

Elin Verbrugghe

## Organisation

Name of the organisation Ghent University (UGent)
Department Department of Pathology, Bacteriology and avian diseases
Country Belgium
Geographical Area Flemish Region

### SCOPE OF THE METHOD

| The Method relates to                               | Animal health      |
|-----------------------------------------------------|--------------------|
| The Method is situated in                           | Basic Research     |
| Type of method                                      | In vitro - Ex vivo |
| Species from which cells/tissues/organs are derived | Xenopus laevis     |
| Type of cells/tissues/organs                        | Kidney             |

### DESCRIPTION

#### Method keywords

A6 cells Immunofluorescence in vitro model chytrid

#### Scientific area keywords

host-pathogen interaction adhesion invasion intracellular maturation fungus amphibian

#### Method description

We describe a fluorescent cell-based *in vitro* infection model that reproduces host-*Batrachochytrium dendrobatidis* (Bd) interactions. Using the epithelial cell line A6 from *Xenopus laevis*, we reproduced different stages of host cell infection and intracellular growth of Bd, resulting in host cell death, a key event in chytridiomycosis. The presented *in vitro* models may facilitate future mechanistic studies of host susceptibility and pathogen virulence.

### Lab equipment

Biosafety cabinet ; CO2 incubator at 26°C ; Fluorescent microscope.

#### Method status

Published in peer reviewed journal

# **PROS, CONS & FUTURE POTENTIAL**

#### Advantages

To date, infectivity and the pathogenicity of Bd have mostly been studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) on *in vivo*-infected skin tissues or ex vivo-infected skin explants. We now established a cell-based assay that mimics the colonization stages of Bd *in vitro* (adhesion, germ tube development, penetration into skin cells, invasive growth and the induction of host cell death), allowing rapid and efficient screening of host-Bd interactions and reducing the number of animals used in infection trials.

### Challenges

This is and stays an *in vitro* model that mimics the *in vivo* situation. Caution should always be exercised when extrapolating *in vitro* data to the *in vivo* situation, but *in vitro* cell culture models allow an experimental flexibility making them highly suitable to study host-pathogen interactions.

### **Modifications**

The method is optimized for the fungal pathogen *Batrachochytrium dendrobatidis*. Expanding this to other pathogens needs further optimization.

## Future & Other applications

The method can be used for a wide range of applications. The availability of an *in vitro* model using a continuous cell line may, for example, be used to analyze the differences in host-pathogen interactions between different Bd strains. Also, expression patterns during different infection steps can be examined.

# REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

### References

Elin Verbrugghe, Pascale Van Rooij, Herman Favoreel, An Martel, Frank Pasmans (2019) *In vitro* modeling of *Batrachochytrium dendrobatidis* infection of the amphibian skin. PLoS ONE 14(11): e0225224. https://doi.org/10.1371/journal.pone.0225224

## Associated documents

cjawinalogne.0225224.pdf









