

Dual and Triple Epithelial Co-culture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities

Created on: 20-02-2020 - Last modified on: 28-02-2020

### **Contact person**

Charlotte De Rudder

### **Organisation**

Name of the organisation Ghent University (UGent)
Department BW25 - Biotechnology
Country Belgium

# SCOPE OF THE METHOD

| The Method relates to     | Human health                     |
|---------------------------|----------------------------------|
| The Method is situated in | Translational - Applied Research |
| Type of method            | In vitro - Ex vivo               |

#### DESCRIPTION

# **Method keywords**

upper respiratory tract host-microbe interaction air-liquid interface sinonasal cavities chronic rhinosinusitis epithelial barrier function macrophages

# Scientific area keywords

host-microbiome interaction biotechnology microbiology immunomodulation

# **Method description**

This is a method to study host-microbe interaction in the upper respiratory tract. A physiologically representative epithelial structure, with mucin producing and ciliated cells, is obtained by culturing respiratory epithelial cells at air-liquid interface in Transwell inserts. Optionally, macrophage-like cells, derived from monocytes, can be included to examine immunomodulation. This co-culture system can be apically inoculated with pure

strains, a defined mixture of bacteria, or donor-derived nasal microbiota. During host-microbe co-culture, typically 72 h, bacterial adhesion, growth and community composition can be measured, as well as host responses such as cytokine release and epithelial barrier functionality.

# Lab equipment

Biosafety cabinet;

Incubator;

Flow cytometer;

Plate-reader:

Electrode to measure transepithelial electrical resistance;

Micropipettes.

#### **Method status**

Still in development

History of use

Internally validated

Published in peer reviewed journal

# PROS, CONS & FUTURE POTENTIAL

# **Advantages**

- Low-tech;
- High throughput;
- Commercially available culture system (Transwell);
- Easy sampling;
- Variety of samples;
- Versatility of host and microbial materials that can be used;
- Robust co-culture preserving viability of host cells and bacteria over multiple days.

#### Challenges

- Labour intensive ;
- Static co-culture (accumulation of metabolites, medium acidification);
- Several weeks required for differentiation;
- Low biomass samples of microbial community.

#### **Modifications**

- Inclusion of more/other host cell types;
- Downscaling;
- Increasing throughput;
- Standardized inoculum.

#### **Future & Other applications**

- Testing of environmental contaminants (cigarette smoke);
- Antibiotics;
- Live biotherapeutic products :
- Topical treatments for upper respiratory tract diseases

# REFERENCES, ASSOCIATED DOCUMENTS AND OTHER INFORMATION

#### References

De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. 2020. Dual and triple epithelial coculture model systems with donorderived microbiota and THP-1 macrophages to mimic host-microbe interactions in the human sinonasal cavities. mSphere 5:e00916-19. https://doi.org/10.1128/mSphere.00916-19.

### **Associated documents**

DeRudder2020\_mSphere\_DualTripleModelSystems\_HMI\_URT.pdf

### Links

Dual and triple epithelial coculture model systems with donorderived microbiota...

### Other remarks

Corresponding author: Tom.VandeWiele@UGent.be

Coordinated by







