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A B S T R A C T

This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of 
repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools 
consistently flagged hepatotoxic potential, likely due to HCY13’s trifluoromethyl group, which is known to 
interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation. 
AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13 
concentrations over 72 h. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA, 
APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic 
hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure 
(PoDNAM) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models 
estimated internal liver concentrations (Cmax liver) of HCY13, ranging from 4 to 20 pM. All PoDNAM values 
significantly exceeded the predicted Cmax liver, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver 
steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in 
vitro assays and computational models to protect human health and support regulatory decision-making without 
animal testing.

1. Introduction

Driven by scientific advancements, ethical concerns, economic con
siderations, and legislative changes, modern toxicology increasingly 
prioritizes using animal-free methods for chemical safety assessment. 
New Approach Methodologies (NAMs) are central to this paradigm shift 
by incorporating innovative techniques such as in vitro methods (e.g. 
human cell cultures), in silico approaches (computer modeling), in 
chemico techniques (chemical interactions), and ex vivo (isolated tissues) 
methods. These methodologies offer the potential to provide more 
human-relevant data, reducing reliance on animal testing and 
improving the efficiency and accuracy of risk assessments through a 
mechanistic approach. The Next Generation Risk Assessment (NGRA) 
exemplifies the integration of NAMs within a tiered framework tailored 
to a specific exposure scenario. This approach is hypothesis-driven and 
focused on harm prevention in humans. It involves evaluating existing 
data and generating new targeted information using NAMs in a tiered, 

iterative manner to ensure a comprehensive chemical safety assessment. 
Supported by recent research and guidelines, NGRA emphasizes trans
parent documentation of the logical framework and uncertainties (Dent 
et al., 2018; Dent et al., 2021; Gautier et al., 2020; Ouedraogo et al., 
2022; Najjar et al., 2024; Assaf Vandecasteele et al., 2021; Bury et al., 
2021a; Directorate and Committee, 2021; Gilmour et al., 2023; Luo 
et al., 2023; OECD, 2023; Ebmeyer et al., 2024; Baltazar et al., 2020).

Being exposure-led, NGRA emphasizes that a chemical is unlikely to 
cause adverse effects on human health if internal exposure levels are 
well below those needed for biological activity. Physiologically-based 
pharmacokinetic (PBPK) models are used to estimate internal expo
sure. In contrast, in silico models and human-relevant in vitro assays are 
employed to flag and assess potential effects by targeting early biolog
ical changes before adverse effects manifest, translating into a Point of 
Departure (PoDNAM). A thorough understanding of the biological path
ways underlying adverse outcomes significantly increases confidence 
that the assessment is protective for the mode of action (MoA). Adverse 
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Outcome Pathways (AOPs) provide a framework by linking mechanistic 
molecular and cellular events to adverse outcomes. They establish 
connections between Key Events (KEs) through Key Event Relationships 
(KERs), starting with the Molecular Initiating Event (MIE) and culmi
nating in the Adverse Outcome (AO) at the organism level. This sys
tematic approach enables a more detailed and mechanistic 
understanding of how chemicals cause harm, thereby enhancing the 
predictive power and reliability of NGRA (Bajard et al., 2023; Pallocca 
et al., 2022). Dividing the PoDNAM by the estimated internal exposure 
yields the Bioactivity-Exposure Ratio (BER). A BER greater than 1 
generally suggests that the bioactivity threshold surpasses estimated 
human exposure, indicating potential safety (Health Canada, 2021; 
Middleton et al., 2022). However, the interpretation of BER values is still 
being refined, and further evidence is needed to establish firm regula
tory thresholds for different types of NAM data (Wambaugh, 2024; 
Cronin et al., 2023).

Since March 2013, when the European Union (EU) fully imple
mented the ban on animal testing and marketing for cosmetics, the 
importance of NGRA has grown. This shift became even more crucial 
because determining a PoD from repeated dose toxicity studies, as 
traditionally done in animals, was no longer possible. NGRA case studies 
have proven effective in protecting human health, particularly for local 
toxicity endpoints such as skin sensitization (Gilmour et al., 2023; 
OECD, 2023; Bialas et al., 2023). However, introducing new cosmetics 
on the EU market remains challenging due to the need for animal-free 
methods to assess complex toxicological endpoints like repeated dose 
systemic and organ toxicity. Although some NGRA case studies assessing 
systemic toxicity have been conducted using data-rich, generally safe 
compounds like fragrances and preservatives (Directorate and Com
mittee, 2021; Ebmeyer et al., 2024; Baltazar et al., 2020; Troutman 
et al., 2015; OECD, 2020; Bury et al., 2021b), a critical challenge re
mains: determining whether NGRA can also effectively identify and 
prohibit toxic compounds from the market. Achieving a higher confi
dence level requires evaluating a broader range of ingredients. In this 
context, this case study applies NGRA principles using an ab initio 
approach, assuming no existing in vivo safety data, to assess the hypo
thetical risk of triggering liver steatosis from HC Yellow No. 13 (HCY13) 
(Fluorgelb II), a widely used fluorinated hair dye. Although both hep
atotoxicity and mutagenicity were flagged during in silico hazard iden
tification, liver steatosis was selected as the primary MoA for evaluation.

Regulated under Annex III of the Cosmetic Regulation (EC) No. 
1223/2009, HCY13 is currently permitted at a maximum on-head con
centration of 2.5% (w/w) in both oxidative and non-oxidative hair dye 
formulations ().

2. Materials and methods

Fig. 1 illustrates an adapted NGRA framework for the ab initio sce
nario, where safety evaluation is carried out based on hypothesis-driven 
in vitro testing combined with computational modeling and a BER for 
risk characterization. Berggren et al. (2017) suggest exit points in the 
lower tiers (0 and 1) via Threshold of Toxicological Concern (TTC) or 
Read-Across (RAx) approaches. However, RAx was deemed unsuitable 
in this study due to the lack of data-rich structural analogs for HCY13. 
Instead, the internal TTC (iTTC) approach has been applied to assess 
potential risks from identified metabolites (Hewitt et al., 2013; Pawar 
et al., 2019; Lester et al., 2023; Lizarraga et al., 2023; Berggren et al., 
2017). The overall workflow includes three tiers and 10 steps, with 
relevant in silico tools and the used in vitro model briefly outlined in 
Fig. 1. Supporting data for interactions with transporters, Cytochromes 
P450, and UGT (Uridine 5′-diphosphate-glucuronosyltransferases) en
zymes (Tier 0) are detailed in Supplementary Material 1, which also 
includes information on the predicted metabolites. Information on an
alogs used in Tier 1 during the Hypothesis Generation, following step 5 
of the Weight-of-Evidence (WoE) approach, is in Supplementary Mate
rial 2. For Tier 2: Bioactivity Characterization, Supplementary Material 

3 provides cell culture details, Supplementary Material 4 covers the 
Neutral Red Uptake (NRU) assay for cell viability, and Supplementary 
Material 5 includes the functional and gene expression assays related to 
lipid accumulation. The Benchmark Concentration (BMC) approach is 
described in Supplementary Material 6.

3. Results

Tier 0: Identifying the Exposure Scenario, Chemical identity, 
and Collecting Data.

3.1. Identify use/exposure scenario: calculation of the externally applied 
dose

Table 1 presents external dose calculations assuming the maximum 
permitted concentration of HCY13 for a conservative analysis 
(SCCS/1322/10, 2011). While commercial products may not always use 
the highest concentration, proprietary formulations are generally inac
cessible, justifying the use of the regulatory maximum. All calculations 
assume 100% purity of HCY13.

To adopt a conservative approach, as outlined in SCCS/1647/22 
(SCCS/1647/22, 2023), a daily exposure value in mg/day is not calcu
lated for hair dyes due to their low frequency of application, i.e. once per 
week for non-oxidative hair dyes. Consequently, the daily dose is not 
averaged over a 7-day period in this context.

3.2. Chemical identity: molecular structure

Characterizing the physical form, molecular weight, and physico
chemical specifications of HCY13 is essential for understanding its 
behavior (SCCS/1647/22, 2023). The chemical identity specifications of 
HCY13 retrieved from SCCS/1322/10 (2011) are summarized in Table 2
(SCCS/1322/10, 2011). HCY13, a yellow powder, contains a nitro group 
(NO2, circled in green) and a trifluoromethyl group (CF3, circled in or
ange), significantly influencing its reactivity and cosmetic use. The NO2 
group contributes to HCY13’s vibrant color properties, making it a 
valuable dye in cosmetic formulations. However, NO2 groups are 
electron-withdrawing, affecting the electronic distribution within the 
molecule and, hence, its reactivity and stability (Kumar et al., 2021). 
They can undergo metabolic activation in biological systems, forming 
reactive intermediates, potentially leading to cytotoxicity or mutage
nicity, raising concerns about the safety of prolonged exposure to 
NO2-containing dyes (SCCS Opinion on Nitrosamines and, 2012). 
Additionally, the presence of a CF3 group in HCY13 categorizes it as a 
non-polymeric per- and polyfluoroalkyl substance (PFAS), according to 
OECD: “any chemical with at least a perfluorinated methyl group (CF3) 
or a perfluorinated methylene group (CF2) is a PFAS (without any 
H/Cl/Br/I atom attached to it)” (Wang et al., 2021; Hammel et al., 
2022). Exposure to PFAS has been linked to numerous adverse health 
effects, notably liver steatosis or fatty liver disease. This association is 
linked to PFAS compounds’ capacity to disrupt lipid metabolism, trig
gering oxidative stress and impairing fatty acid (FA) β-oxidation, 
resulting in lipid accumulation within hepatocytes. While the precise 
mechanism remains elusive, research suggests the potential involvement 
of PPARA activation and perturbations in the lipolysis-lipogenesis bal
ance and the depletion of liver glutathione levels, as evidenced across 
various epidemiological, animal, and in vitro studies (Zhao et al., 2023; 
David et al., 2023; Zhang et al., 2023; Sadrabadi et al., 2024; Chen et al., 
2020; Khan et al., 2023; Hyötyläinen et al., 2021; Lu et al., 2019; 
Goodrich et al., 2023; India-Aldana et al., 2023; Ojo et al., 2021). The 
CF3-group in HCY13 may thus contribute to such effects.

While both hepatotoxicity and mutagenicity were predicted, only 
liver steatosis was selected to exemplify NGRA for this MoA. Indeed, the 
CF3 group in HCY13 might play a critical role in reducing its mutagenic 
potential. As a strong electron-withdrawing group, -CF3 lowers the 
electron density on the aromatic ring and introduces steric hindrance, 
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hampering metabolic activation pathways such as hydroxylamine for
mation, typically associated with DNA reactivity (Hewitt et al., 2013; 
Pawar et al., 2019; Lester et al., 2023; Lizarraga et al., 2023).

3.3. Collect supporting data

The basic physicochemical properties of HCY13 are shown in Table 2
(). To ensure chemical structure identification is interpretable by in silico 
software, formats like the Simplified Molecular Input Line Entry System 
(SMILES) have been used (Weininger, 1988).

3.3.1. In silico absorption, distribution, metabolization, excretion (ADME) 
prediction

A key benefit of employing ADMET Predictor 11.0 software, devel
oped by Simulation plus®, is its capability to directly import ADME 
parameters into subsequent software (GastroPlus) to predict the 
maximum liver concentration. Both software tools were utilized under 
the Simulation Plus University + program, providing free academic 
access. To accurately estimate the internal exposure concentration using 
PBPK modeling in Tier 1, extra chemical-specific parameters such as 
Blood: plasma ratio (Rbp), the fraction unbound in plasma (Fup), liver 
clearance (CL), and the volume of distribution (Vd), are needed as input 
data. In this study, the predicted required data are summarized in 
Table 2. HCY13, classified as class 2 under the Extended Clearance 
Classification System (ECCS), is primarily cleared via liver metabolism 
(Varma et al., 2015). It exhibits a Fup of 8.819%, indicating high plasma 
protein binding, which suggests that the majority of the compound is 
bound to plasma proteins such as albumin, thereby reducing the free 
fraction availabile for tissue distribution and metabolism (Yun et al., 
2021). With a Vd of 1.571 L, HCY13 remains largely confined to the 
vascular space and does not extensively distribute into tissues. The Rbp 
near 1 suggests that HCY13 has similar affinities for plasma and the 
cellular components of the blood. Collectively, these characteristics 
suggest that HCY13 exhibits extensive plasma protein binding and is 
primarily confined to the vascular compartment with limited tissue 
interaction. HCY13 shows a high affinity for uptake via organic anion 
transporter 1 (OAT1, Km = 22.502 μM) but low affinity for organic 
cation transporter 1 (OCT1, Km = 193.009 μM), suggesting differential 
cellular uptake influenced by transporter expression (Nigam et al., 2015; 
Roth et al., 2012; Suo et al., 2023; Lozano et al., 2013; Granados et al., 
2021). Furthermore, HCY13 is unlikely to inhibit the Bile Salt Export 
Pump (BSEP), as indicated by a high IC50(log) of 73.4 μM, suggesting a 
minimal impact on bile acid transport (Chan and Benet, 2018). HCY13 
exhibits rapid hepatic metabolism with an intrinsic clearance of 30.31 
μL/min/million hepatocytes, as detailed in Supplementary Material 1. It 
is likely metabolized by Cytochrome P450 (CYP) enzymes (particularly 
CYP3A4, CYP1A2, CYP2C8, CYP2C19, and CYP1A2) and Uridine 
5′-diphosphate-glucuronosyltransferases (UGT) enzymes (UGT1A8, 
UGT1A9, UGT2B7) (Rowland et al., 2013). It strongly inhibits CYP1A2 
(Ki (inhibition constant) = 3.276 μM, prediction confidence: 95%), 

Fig. 1. The NGRA framework used to assess the safety of 2.5% (w/w) HC Yellow No. 13 under non-oxidative conditions, focusing on liver steatosis. The workflow is 
divided into 4 tiers, covering 10 steps: Tier 0: Gathering Information (Steps 1–3): Includes identifying the use/exposure scenario, chemical identity, and supporting 
data, including in silico ADMET predictions and physicochemical properties. Tier 1: Hypothesis Generation (Steps 4–5): Involves estimating internal liver con
centrations through PBPK modeling (dermal exposure) and generating a MoA hypothesis based on WoE analysis. Tier 2: Bioactivity Characterization (Steps 6–7): 
Involves targeted in vitro testing using hSKP-HPC for liver steatosis endpoints and refining biokinetic and population-level estimates. Tier 3: Risk Characterization 
(Steps 8–10): Includes determining PoD using BMC analysis, calculating the BER, and evaluating uncertainties for risk assessment. [HCY13: HC Yellow No. 13, CAS: 
Chemical Abstracts Service, INCI: International Nomenclature of Cosmetic Ingredients, SCCS: Scientific Committee on Consumer Safety, SMILES: Simplified Mo
lecular Input Line Entry System, OECD QSAR Toolbox: Organisation for Economic Co-operation and Development Quantitative Structure-Activity Relationship 
Toolbox, PBPK: Physioligically-based Pharmacokinetic, BW: Body Weight, MoA: Mode of Action, WoE: Weight-of-Evidence, GenRA: Generalized Read-Across, HESS: 
Hazard Evaluation Support System, hSKP-HPC: human Skin-derived Precursor Hepatocyte-like Cells, AHR: Aryl Hydrocarbon Receptor, PPARA: Peroxisome 
Proliferator-Activated Receptor Alpha, LXRA: Liver X Receptor Alpha, APOB: Apolipoprotein B, ACOX1: Acyl-CoA Oxidase 1, CPT1A: Carnitine Palmitoyltransferase 
1A, FASN: Fatty Acid Synthase, SCD1: Stearoyl-CoA Desaturase 1, DGAT2: Diacylglycerol O-Acyltransferase 2, CD36: Cluster of Differentiation 36, PPARG: 
Peroxisome Proliferator-Activated Receptor Gamma, TG: Triglyceride, NaVPA: Sodium Valproate, PEAR: Population Estimates for Age-Related Physiology, iTTC: 
internal Threshold of Toxicological Concern, BMC: Benchmark Concentration, PoD: Point of Departure, NAM: New Approach Methodologies, BMR: Benchmark 
Response, BMCL: Benchmark Concentration Lower Bound, BER: Bioactivity Exposure Ratio].

Table 1 
Calculation of the externally applied dose using 2.5% (w/w) HCY13 in a hypothetical 
hair dye formulation (SCCS/1647/22, 2023). $Assuming that 1 ml of product is 
equivalent to 1 g [C: Concentration, A: Amount per application, R: Retention factor].

Use concentration (C) 2.5% (maximum 
permitted)

Annex III of EU legislation, Ref 
no. 261

Amount per 
application (A)$

35 g SCCS/1647/22 (
SCCS/1647/22, 2023)

Retention factor (R) 0.1 SCCS/1647/22 (
SCCS/1647/22, 2023)

- > Amount applied (C/100*A*R) = (2.5/100)*35*0.1*1000 = 87.5 mg

Table 2 
Chemical identity specifications and physicochemical properties. Rows “Name” to 
“Relative density”, of HCY13 retrieved from (SCCS/1322/10, 2011). Rows “ECCS 
classification” to “Interactions with transporters and Cytochromes P450s” predicted 
by ADMET Predictor 11.0. Supplementary Material 1 presents the predicted in
teractions of HCY13 with various transporters and cytochrome P450 enzymes, as 
determined by ADMET Predictor 11.0, along with specific kinetic parameters where 
applicable. [ECSS: Extended Clearance Classification System].

Name HC Yellow 13

CAS no. 10442-83-8
Molecular formula C9H9F3N2O3

2D chemical structure

INCI names N-(2-Hydroxyethyl)-2-nitro-4- 
trifluormethyl-aniline; 
1-(2-Hydroxyethyl)amino-2-nitro-4- 
trifluormethylbenzene

Commercial names Fluorgelb II, Cos 128, COLIPA B102
Molecular weight 250.18 g/mol
Log Po/w at pH 7, 23◦C 2.54 (determined by EC-A.8 method)
Appearance Yellow crystalline powder
Purity 99% HPLC
Water solubility at 20◦C 506 mg/L (determined by EC-A.6 method)
Melting point 74.7 ◦C
Boiling point 227.1 ◦C
Vapor pressure at 20◦C 3.1*10^-8 hPa
Relative density at 20◦C 1.45
ECCS classification 2
Fraction unbound in plasma (Fup) 8.819 %
Volume of distribution human 

(Vd)
1.571 L

Blood:plasma ratio (Rbp) 1.003
Hepatic intrinsic clearance (CL) 30.31 μL/min/million hepatocytes
Renal excretion No
Interaction with transporters and 

Cytochromes P450s
Supplementary Material 1
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suggesting potential for drug-drug interactions affecting CYP1A2 sub
strates (Bhatt et al., 2022). Regarding the identified metabolites, simu
lations revealed potential metabolites in various environments, 
including rat liver, human skin, gut microbiome, and liver. In skin 
metabolism, the OECD QSAR Toolbox identified a single metabolite, M3 
(OCCN=C1C=CC(=CC1 = [N+](O)[O-])C(F)(F)F), the imino-enamino 
tautomer of the parent compound. In contrast, the human microbial 
and rat liver simulations produced 16 and 4 metabolites, respectively, 
with one common metabolite, M1 (NC1=CC=C(C(F)(F)F)C=C1[N+] 
([O-]) = O). Further analysis with ADMET Predictor also identified M1 
and another metabolite, M2 (O=CCNC1=CC=C(C(F)(F)F)C=C1[N+] 
([O-]) = O), in the human liver. These metabolites are primarily pro
cessed by CYP1A2, CYP2C19, and CYP3A4, with M1 metabolized at 74% 
and M2 at 26%, specifically M1 by CYP1A2 (10.7%), CYP2C19 (49.1%), 
and CYP3A4 (4.2%), and M2 by CYP2C19 (21.8%) and CYP3A4 (0.9%) 
(Supplementary Material 1).

3.3.2. Active group prediction
Centering on the molecular structure of HCY13, which includes the 

nitro and the trifluoromethyl hepatotoxic groups, and considering 
ADME predictions indicating liver excretion as the primary route, our 
analysis further focused on its possible hepatotoxic potential. Using 
SMILES annotation, four freely available in silico tools were applied: 

• HESS (OECD QSAR Toolbox): A mechanistic tool utilizing the Hazard 
Evaluation Support System (HESS), which categorizes in vivo toxicity 
for 500 chemicals across 14 types (Sakuratani et al., 2013; Safety 
Assessment Division, Chemical Management Center, National Insti
tute of Technology and Evaluation, 2023), identified a 
flutamide-induced hepatotoxicity alert with a 61% similarity index 
using the Dice method.

• VEGA-IRFM: A mechanistic tool employing the IRFMN-v.1.0.1 hep
atotoxicity model with SARpy, which identifies structural alerts, 
highlighted the CF3-group as a relevant hepatotoxic fragment with 
86% accuracy (Pizzo et al., 2016; Gadaleta and Benfenati, 2022).

• SA Predictor: This statistical tool, which offers rapid toxicity 
screening through structural alerts (61), flagged both NO2 and CF3 
groups as potential hepatotoxic moieties.

• Vienna Livertox Workspace: A mechanistic tool using Drug-Induced 
Liver Injury (DILI) models with a random forest algorithm (500 trees 
and RDKit descriptors) based on a dataset of 966 compounds pre
dicted a 0.72 positive DILI effect in humans with accuracies ranging 
from 0.59 to 0.68 (Montanari et al., 2020; Vienna LiverTox, 2020).
HCY13 falls within the applicability domain of all four models. The 
combined use of statistical and mechanistic in silico tools, as rec
ommended by the International Cooperation on Cosmetics Regula
tion (ICCR) (Teixeira do Amaral et al., 2014), consistently indicated 
a hepatotoxic alert for HCY13.

Tier 1: Obtaining Internal Organ Concentrations and Hypothesis 
Generation.

3.4. Obtaining the internal liver concentration using PBPK modeling via 
dermal route administration

To determine the internal liver concentration, it is essential to first 
calculate the fraction of the applied hair dye dose that penetrates the 
scalp and thus an estimate of HCY13’s dermal absorption is needed. This 
study used a dermal absorption value of 3.13 μg/cm2 (mean + 2 SD), 
corresponding to 0.13 % of the applied dose. This value was derived 
from an in vitro dermal absorption study (compliant with OECD 428) 
conducted on pig skin with a typical non-oxidative hair dye formulation 
containing 2.5% (w/w) HCY13, as detailed in SCCS/1322/10 
(SCCS/1322/10, 2011). For an externally applied dose of 87.5 mg, this 
results in a dermally bioavailable dose of 0.11 mg.

3.4.1. PBPK modeling
Following predictions from the ADMET Predictor, GastroPlus 9.9 

was used to estimate maximum liver concentrations (Cmax liver) using 
two deterministic kinetic models: a compartmental model and a PBPK 
model. The software was accessed through the Simulation Plus Uni
versity + program at no cost. The compartmental model characterizes 
compound distribution and elimination using parameters such as CL, Vd, 
and transfer rate constants (Chen and Om Abuassba, 2021) and allows 
adjustments for BW and liver clearance parameters by selecting the 
hepatic clearance mechanism (cytochromes, total microsomes, and he
patocytes). All options were explored due to the lack of precise data on 
HCY13’s metabolism.

The PBPK model, tailored for a 30-year-old female weighing 75 kg, 
provides a detailed representation incorporating tissue weights, vol
umes, and physiological parameters, allowing adjustments for renal 
clearance and liver metabolism (Jones and Rowland-Yeo, 2013; Simu
lations-plus, 2017). A consistent Body Weight (BW) of 75 kg was used, 
reflecting the PBPK model’s default setting, despite other guidelines 
suggesting 60 kg (SCCS) (SCCS/1647/22, 2023) and 80 kg (U.S. public 
health) (Agency for Toxic Substances and Disease Registry and U.S. 
Department of Health and Human Services PHS, 2023) for adults.

Both kinetic models estimated liver concentrations following intra
venous administration of 0.11 mg HCY13, chosen to mimic systemic 
absorption from the scalp application over a 168-h (7-day) period. The 
compartmental model predicted the Cmax liver to be 4 pM, while the PBPK 
model predicted concentrations of 15 pM. These concentrations were 
calculated with renal clearance set to zero based on HCY13’s ECCS 
classification (Table 2), yielding a narrow range under both models by 
exploring various liver metabolism clearance types.

3.5. Mode of action (MoA) hypothesis generation

Based on the data gathered so far, we hypothesized that HCY13 may 
pose a concern for liver toxicity. To further substantiate this hypothesis, 
an extra WoE analysis was conducted by identifying 27 analogs of 
HCY13 with a Tanimoto coefficient exceeding 0.8 using the GenRA 
software from EPA (U.S Environmental Protection Agency) (Schultz and 
Cronin, 2017; Cronin et al., 2017). The structural alerts of these analogs 
were then assessed using the HESS within the OECD QSAR Toolbox. 
Notably, 21 of these analogs triggered a flutamide hepatotoxicity alert, 
similar to the warning observed with HCY13 itself (Supplementary 
Material 2). Considering the structural resemblance of these analogs and 
the consistent patterns observed, it is reasonable to assume that HCY13 
carries a general risk of liver toxicity.

Furthermore, we hypothesized liver steatosis as the mode of action 
(MoA). This hypothesis builds on the earlier discussion of the CF3 group 
in HCY13, which is similar to PFAS compounds that disrupt lipid 
metabolism, induce oxidative stress, and impair fatty acid β-oxidation, 
leading to lipid accumulation in hepatocytes—a hallmark of steatosis. 
The CF3 group may contribute to these effects through potential PPARA 
activation, disturbances in the lipolysis-lipogenesis balance, and deple
tion of liver glutathione levels, as discussed earlier in the context of 
PFAS exposure (Zhao et al., 2023; Zhang et al., 2023; Sadrabadi et al., 
2024; Chen et al., 2020; Khan et al., 2023; Hyötyläinen et al., 2021; Lu 
et al., 2019; India-Aldana et al., 2023; Ojo et al., 2021; David et al., 
2023; Goodrich et al., 2023; Hara and Zeng).

Tier 2: Bioactivity Characterization.

3.6. Targeted testing using a human-relevant test system in vitro

Following the MoA hypothesis and guided by a mechanistically 
anchored AOP approach (Verhoeven et al., 2024), we subsequently 
evaluated the steatotic activity of HCY13 using a human in vitro stem 
cell-derived hepatic model (hSKP-HPC), previously shown to be capable 
of detecting steatotic compounds (Buyl et al., 2023; Rodrigues et al., 
2014, 2016; Boeckmans et al., 2021; Natale et al., 2018). Human 
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skin-derived precursors (hSKP) were isolated from postnatal foreskin 
samples of young boys (Supplementary Material 3) (Rodrigues et al., 
2016; De Kock et al., 2011; De Kock et al., 2012; Escher et al., 2020; 
Neutral Red Uptake Assay SCOPE, 2022; Verhoeven et al., 2024). The 
cells were differentiated into hepatocyte-like cells (hSKP-HPC) through 
a sequential process completed by day 24 and subsequently used for 
exposure experiments (Rodrigues et al., 2014; De Kock et al., 2011, 
2012). Cells were exposed daily to various sub-cytotoxic concentrations 
of HCY13 over 72 h (Supplementary Material 4) (Escher et al., 2020; 
Neutral Red Uptake Assay SCOPE, 2022). NaVPA and solvent (media) 
were positive and negative controls, respectively. We evaluated the 
expression of eleven marker genes in lipid metabolism derived from 
Verhoeven et al. (2024). The selected genes represent the MIE, such as 
PPARG and PPARA (regulate fatty acid metabolism), AHR (regulate 
xenobiotic metabolism), and LXRA (cholesterol metabolism). Addition
ally, we included genes related to downstream KEs like CPT1A (mito
chondrial β-oxidation), CD36 (Fatty Acid (FA) uptake), SCD1 (FA 
synthesis), and FASN (FA synthesis). We also examined ACOX1 (mito
chondrial β-oxidation), DGAT2 (FA synthesis), and APOB (Ver
y-Low-Density-Lipoprotein (VLDL) export), covering key processes in FA 
β-oxidation, de novo lipogenesis, and lipid export, respectively. These 
selections align with the KEs of steatosis as outlined by the latest AOP 
network (Fig. 2). Furthermore, we assessed the accumulation of lipids, 
which serves as the phenotypic hallmark and a crucial key event in the 
development of steatosis. Details of the gene expression assay, micro
scopic imaging of neutral lipids, flow cytometric analysis, and triglyc
eride (TG) quantification are described in Supplementary Material 5.

Microscopic images revealed that rising concentrations of HCY13 
were associated with increased neutral lipid accumulation (Fig. 3A). 
Flow cytometry semi-quantitatively confirmed this, and a colorimetric 

assay demonstrated a proportional increase in TG levels with higher 
HCY13 concentrations (Fig. 3B and C). To understand the mechanism 
behind lipid accumulation, we investigated the expression of key genes 
involved in lipid metabolism. Exposure to HCY13 resulted in significant 
upregulation of PPARG and downregulation of CD36. PPARG, identified 
as an MIE in the AOP, is a key regulator of lipid metabolism, promoting 
FA uptake, TG synthesis, and lipid storage. The observed HCY13- 
mediated upregulation of DGAT2 expression further contributes to 
increased TG synthesis and accumulation in hepatocytes, leading to 
steatosis (Cheol et al., 2007; Monetti et al., 2007; Villanueva et al., 
2009).

3.7. Biokinetic refinement (population estimation, metabolites)

3.7.1. Population estimation
Liver concentrations were estimated at both individual and popula

tion levels, using deterministic estimation for individuals (Step 3.4) and 
a probabilistic approach for the population level using GastroPlus 9.9’s 
population simulator with Monte Carlo simulations. This approach 
incorporated physiological and pharmacokinetic variability by gener
ating virtual subjects with random adjustments to parameters such as 
gastrointestinal transit times, pH levels, and pharmacokinetic metrics. A 
cohort of 100 individuals (80% female, 20% male, aged 20–70) was 
selected using Population Estimates for Age-Related (PEAR) Physiology, 
allowing a comprehensive assessment using both compartmental and 
customized PBPK models. Under the assumed exposure scenario and 
simulation parameters (7 days), the compartmental kinetic model 
showed no significant difference in Cmax liver values across the different 
liver metabolism settings, with all simulations consistently predicting a 
Cmax liver value of 5 pM. In contrast, the PBPK model showed variability 

Fig. 2. AOP network applied to evaluate the steatogenic potential of HCY13 using mechanistically-anchored assays (indicated with black-colored ring). Key MIEs, 
such as the activation of PPARG, PPARA, AHR, and LXRA, are linked to downstream Key Events (KEs), including CD36-mediated fatty acid uptake, FASN and SCD1- 
driven fatty acid synthesis, ACOX1 and CPT1A-mediated β-oxidation, and DGAT2-regulated triglyceride synthesis. These molecular and cellular mechanisms 
culminate in the Adverse Outcome (AO) of steatosis, characterized by intracellular lipid accumulation and phenotypic hallmarks like inflammation, mitochondrial 
disruption, and oxidative stress (Verhoeven et al., 2024). [AOP: Adverse Outcome Pathway, MIEs: Molecular Initiating Events, KEs: Key Events, SIRT1: Sirtuline 1, 
LXRA: Liver X receptor alpha, PXR: Pregnane X receptor, PPARG: Peroxisome proliferator-activated receptor gamma, AKT: RAC-alpha serine/threonine-protein 
kinase, AMPK: AMP-activated protein kinase, PPARA: Peroxisome proliferator-activated receptor alpha, FXR: Farnesoid x receptor, AHR: Aryl hydrocarbon receptor, 
NRF2: Nuclear factor erythroid 2-related factor 2, mTOR: Mechanistic Target Of Rapamycin Kinase.
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among the three liver metabolism settings (hepatocytes, microsomes, 
and CYP450 enzymes). Specifically, the PBPK model estimated a Cmax 

liver value of 20 pM with both CYP450 enzyme metabolism and micro
somes, while predicting 10 pM with hepatocytes.

3.7.2. Metabolites refinement
All three metabolites of HCY13 were analyzed for repeated dose liver 

toxicity using HESS via the OECD QSAR toolbox. The analysis revealed 
that M1 and M2 triggered a flutamide-hepatotoxicity alert, while M3 
showed no structural alert by HESS. Per the iTTC principle, potential 
health risks of hepatotoxicity-alert metabolites M1 and M2 were 
assessed. Assuming the complete metabolism of HCY13 into M1 (74%) 
and M2 (26%) within the liver, their plasma concentrations were esti
mated using GastroPlus 9.9 in both single-object and population models. 
The formation of metabolite M1 from 0.11 mg of HCY13 was 0.081 mg, 
while that of metabolite M2 was 0.029 mg, based on the respective 74% 
and 26% metabolism rates. The results indicated that the maximum 
plasma concentrations (Cmax plasma) of M1 in the compartmental model 
was 3 pM at the individual level and 4 pM at the population level. In 
contrast, in the PBPK model, the maximum plasma concentrations were 
90 pM at the individual level and 100 pM at the population simulation 
level. For M2, the Cmax plasma in the compartmental model was 0.5 pM at 
the individual level and 0.8 pM at the population level. According to the 
PBPK model, the Cmax plasma for M2 was estimated at 40 pM for 
individual-level simulations and 50 pM for population-level simulations. 
These concentrations are well below the iTTC threshold of 1 μM, sug
gesting that neither metabolite M1 nor metabolite M2 is likely to induce 
significant biological effects. Therefore, the focus of the risk assessment 
from this step was on the parent compound HCY13 (SCCS/1647/22, 
2023; Blackburn et al., 2020).

3.8. Points of Departure calculation using the BMC approach (PoDNAM)

The concentration-response curves for TG accumulation and those 
showing significant changes in gene expression (DGAT2, PPARG, and 
CD36) were analyzed using the Benchmark Concentration (BMC) 
approach in PROAST 70.1 software by RIVM (Rijksinstituut voor 
Volksgezondheid en Milieu). This method estimates the exposure level 
that causes a predefined change, known as the Benchmark Response 
(BMR), leveraging full dose-response data and various statistical models 
for robust risk estimation. A BMR of 20% was applied for lipid accu
mulation, corresponding to one standard deviation (SD) of the control 
group, aligning with EPA guidelines (US EPA, 2016). For gene expres
sion, due to higher variability (SD 0.01 to 0.1), a BMR of 50% was set to 
capture meaningful changes (Fortin et al., 2023; Fragki et al., 2023). 
Each analysis generated a BMC confidence interval, with the lowest 
(BMCL) and highest (BMCU) estimates, designating the BMCL as the 
PoDNAM for each biomarker (Middleton et al., 2022). DGAT2 had a BMCL 
range of 27.8–67.9 μM, PPARG showed 57.8–92.2 μM, and CD36 ranged 
44.8–555.0 μM, indicating varying sensitivities to HCY13. TG accumu
lation, the most sensitive biomarker, showed the lowest BMCL of 0.484 
μM, emphasizing its central role in the AOP of steatosis (Luckert et al., 
2018; Vinken, 2015; Svingen et al., 2021). This comprehensive analysis 

is visually represented using exponential and Hill models in Supple
mentary Material 6.

Tier 3 – Risk characterization.

3.9. Calculation of Bioactivity-Exposure Ratio (BER) based on lowest 
PoDNAM

The Bioactivity Exposure Ratio (BER) method assesses safety by 
comparing the most sensitive in vitro bioactivity threshold (PoDNAM) 
with predicted human exposure levels, specifically Cmax liver. A BER 
above 1 indicates that the bioactivity threshold is higher than the esti
mated internal exposure level, providing a margin of safety. Conversely, 
a BER below 1 suggests potential adverse effects, warranting further 
investigation (Health Canada, 2021). Using the PoDNAM of 0.484 μM 
derived from TG accumulation, we calculated the BER by dividing this 
value by the Cmax liver predicted by GastroPlus 9.9. In the compartmental 
model, single-object simulation yielded a Cmax liver value of 4 pM, 
resulting in a BER of 121000. Population simulation resulted in a Cmax 

liver concentration of 5 pM, with a corresponding BER of 96800. For the 
PBPK model, single-object simulation produced a Cmax liver concentra
tion of 15 pM, leading to a BER of 32267. Population-based simulation, 
depending on liver metabolism settings, resulted in C max liver values of 
10 pM and 20 pM, with BER values of 48400 and 24200, respectively. As 
all BER values are much higher than 1, no significant risk of liver stea
tosis is expected under the assumed use conditions of HCY13, based on 
the tools and test system applied in the assessment.

3.10. Risk evaluation and uncertainties assessment

Accurately documenting uncertainties in data generation is a critical 
step within the NGRA framework. While quantifying uncertainties is 
ideal, it is often not feasible. To address this, we employed a qualitative 
approach, classifying certainties as Low (L), Medium (M), or High (H) to 
capture potential variability and biases in the assessment. Transparent 
documentation of in silico and in vitro model limitations is essential for 
fostering trust and improving the adoption of NGRA methodologies. 
Table 3 provides a qualitative assessment of uncertainties, detailing the 
level of certainty in each area, potential reasons for over- or under- 
estimations, and the possible impact on overall risk assessment (Dent 
et al., 2021; Gosling, 2013). Key areas, such as internal exposure and 
biological coverage, have been extensively discussed in the literature, 
underscoring the importance of accurate PBPK modeling (Moxon et al., 
2020) and comprehensive biological coverage (Carmichael et al., 2022) 
for reliable risk assessments with animal-free approaches.

Although HCY13 is unlikely to induce steatosis under the assumed 
use conditions at both individual and population levels, understanding 
the key parameters influencing Cmax liver remains crucial for risk 
assessment. To evaluate the confidence in our findings, we conducted a 
sensitivity analysis on 16 parameters affecting Cmax liver, systematically 
examining how changes in these key model input parameters impact the 
model output (EMA, 2018). Our findings identified dose and LogD as 
primary drivers, followed by the liver partition coefficient (Kp). Factors 
such as Rbp, Fup, and liver clearance significantly contributed to 

Fig. 3. Assessment of lipid accumulation in the hSKP-HPC model upon HCY13 exposure was performed using multiple assays. (A) Microscopy depicts cells treated 
with HCY13, a solvent control and the positive control NaVPA. Blue staining represents the nuclei, and green staining indicates neutral lipids (Boeckmans et al., 
2021). (B) Flow cytometry shows increasing Bodipy 493/503 signal intensity with rising HCY13 concentrations. Adjacent, signal intensity is plotted against con
centrations (n = 4) (Boeckmans et al., 2020). (C) Colorimetric TG quantification reveals a trend of increasing TG concentration at higher HCY13 concentrations (n =
3) (Elabscience.com). (D) Gene expression analysis of HCY13 focuses on key genes representing CD36 (uptake of lipids), APOB (export of lipids), ACOX1 and CPT1A 
(beta-oxidation), FASN, SCD1, and DGAT2 (de novo lipogenesis), as well as PPARA, PPARG, LXRA, and AHR (molecular initiating events, or MIEs) highlighting 
significant DGAT2, CD36, and PPARG gene up or down-regulation (Rodrigues et al., 2014). For all graphs, statistical significance was determined using one-way 
ANOVA and Tukey’s or Dunnett’s tests (*p < 0.05), with error bars representing the variability across three independent runs, each with two technical repli
cates. [CTL: negative control condition, TG: Triglycerides, AHR: Aryl hydrocarbon receptor, PPARA: Peroxisome proliferator-activated receptor alpha, PPARG: 
Peroxisome proliferator-activated receptor gamma, APOB: Apolipoprotein B, ACOX1: Acyl-coenzyme A oxidase 1, CD36: Cluster of differentiation 36, FASN: Fatty 
acid synthase, SCD1: Stearoyl-CoA desaturase-1, CPT1A: Carnitine palmitoyltransferase 1A, DGAT2: Diacylglycerol O-acyltransferase 2, LXRA: Liver X recep
tor alpha.].
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variations, and individual-specific parameters, particularly body 
weight, were crucial in determining variability in Cmax liver.

4. Discussion

Traditional risk assessment relies heavily on animal testing to iden
tify toxicity thresholds, a method that, despite its comprehensiveness, 
faces ethical concerns, high costs, and potential inaccuracies due to 
intra- and interspecies differences. With the EU ban on animal testing for 
cosmetics, the NGRA approach has emerged as a viable alternative, 
focusing on exposure-led, hypothesis-driven, human-relevant, and 
harm-prevention principles (Dent et al., 2018; Gwinn et al., 2017; 
Browne et al., 2024; Schmeisser et al., 2023). Human-based NAMs are 
central to NGRA because they offer more precise data on how chemicals 
affect the human body. By integrating into mechanistic frameworks like 
AOPs, they help ensure these methods meet the standards of traditional 
risk assessments. This alignment strengthens scientific evaluations, ul
timately aiding regulatory acceptance of these approaches (Bajard et al., 
2023; Hoffmann et al., 2022; Bonneau et al., 2021). Case studies uti
lizing scientifically valid animal-free methods are essential for gaining 
regulatory acceptance of NGRA methodologies by demonstrating their 
reliability and effectiveness in protecting human health (Dent et al., 
2021; Rogiers et al., 2020). However, robust strategies are necessary to 
address uncertainties in the generated in vitro data and computational 
predictions, including ADME and PBPK modeling (Brescia et al., 2023).

HCY13 was selected for this NGRA case study due to its prior iden
tification as a potentially hepatotoxic cosmetic ingredient from 90-day 
repeated-dose animal studies (Gustafson et al., 2020). Flagged four 
times for hepatotoxicity by a combination of mechanistic and statistical 
in silico tools, this underscores the need for integrating both approaches 
to enhance confidence in hazard identification (Teixeira do Amaral 
et al., 2014). Despite these flags, the SCCS’s traditional risk assessment 
deems HCY13 safe for use as both an oxidative and non-oxidative hair 
dye, with a maximum on-head concentration of 2.5% (w/w) (). Selecting 
a compound with historical data is essential for validating NGRA, as it 
allows comparisons between NAM-based assessments and traditional 
risk assessments, demonstrating how to analyze, integrate, and interpret 
these data effectively.

This study utilized an OECD 428 in vitro dermal absorption study 
under non-oxidative conditions, revealing a dermal bioavailability of 
0.13 % of the applied dose (). This corresponds to an internal dose of 

0.11 mg, irrespective of the body weight considered in the exposure 
scenario. The use of OECD 428 data ensures a reliable margin of safety, 
as it is based on actual tested conditions rather than hypothetical worst- 
case scenarios. In the absence of in vitro dermal bioavailability data, in 
silico tools, such as the Skin Permeation Calculator—which does not 
require formulation-specific parameters—, or the TCAT model from 
GastroPlus, which relies on formulation-specific data, can be used to 
estimate dermal bioavailability (Kuster et al., 2022; Tsakalozou et al., 
2023; Spires, 2020; DumontCoralie and AsturiolDavid; van Osdol et al., 
2024).

Liver concentration estimates for HCY13 required additional ADME 
parameters predicted by ADMET Predictor® 11.0, increasing uncer
tainty in organ-level concentrations (Dulsat et al., 2023; Zhai et al., 
2022; Yamashita and Hashida, 2004). Using GastroPlus® 9.9, we 
employed a compartmental model and a customized PBPK model to 
estimate liver concentrations, assuming an IV administration of the 
calculated internal dose of 0.11 mg for an individual of 75 kg, simulated 
over 7 days. While generic kinetic models are generally accurate enough 
for organ concentration estimates, PBPK models provide enhanced 
flexibility and refinement for NAM-based risk assessments (EPA, 2018; 
Punt et al., 2022; Deepika and Kumar, 2023). Probabilistic modeling at 
the population level was used to bridge this gap to refine exposure es
timates from worst-case to more realistic scenarios, enhancing confi
dence in risk assessment decisions (Tozer et al., 2023; Chiu and Rusyn, 
2018). While investigating internal exposure at the population level 
increases confidence in risk assessment decision-making (Chiu and 
Rusyn, 2018), identifying metabolites via in silico-only methods 
heightens uncertainty, as reflected in the low certainty level associated 
with the iTTC approach. Increased confidence would be achieved if 
metabolites were experimentally determined in vitro, providing more 
accurate and reliable data to inform the risk assessment process. 
Although shown to be capable of detecting steatotic compounds (Buyl 
et al., 2023; Rodrigues et al., 2014, 2016; Boeckmans et al., 2021; Natale 
et al., 2018), the limited metabolic capacity of the hSKP-HPC cells used 
for bioactivity characterization necessitated reliance on in silico methods 
for metabolite identification. This limitation of the test system was 
addressed by demonstrating that the predicted plasma concentrations of 
the M1 and M2 metabolites were below the accepted iTTC threshold of 1 
μM (Ebmeyer et al., 2024; SCCS/1647/22, 2023), indicating no signif
icant biological effects.

Consequently, the risk assessment focused on the parent compound 

Table 3 
Qualitative evaluation of certainty levels encountered in our animal-free NGRA workflow for assessing the liver steatogenic risk of 2.5% (w/w) HCY13 in non-oxidative 
hair coloring products. SCCS NoG: Scientific Committee on Consumer Safety Notes of Guidance, PoD: Point of Departure.

Area of uncertainty Level of certainty Rationale of the over or under-estimation 
of the value

Impact on risk 
assessment decision

Consumer exposure High: Overestimation (the maximum use is 
likely to be an overestimate)

More conservative
• Consumer habits and practices derived from SCCS/1647/22
• Regulatory maximum of 2.5% usage in non-oxidative hair coloring products

Toxicity 
identification

Medium: Overestimation Increase decision 
certainty• Based on in silico structural alerts within the applicability domain

• Consideration of functional groups in the assessment
Metabolites 

identification
Low: Underestimation Decrease decision 

certainty• In silico data analysis within the applicability domain
Internal exposure Medium: Reasonable worst case More conservative

• ADME parameters predicted through in silico tools within the applicability 
domain

• Sensitivity analysis conducted to quantify the influence of input parameters on 
model output

• Characterization of inter-individual differences in single-object and population 
Cmax liver using deterministic and probabilistic approaches

Range of biomarkers 
assessed

Medium: Moderate coverage Increase uncertainty
• Moderate biological coverage

In vitro tests Medium: Protective enough No impact
• Short-term repeated exposure conducted in a human-relevant test system

PoD selection High: Unlikely to be overestimation Increase confidence
• Four BMCL ranging from 0.484 to 57.8 μM, with the lowest one selected as the 

most sensitive
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HCY13. To better simulate real-life conditions and further refine the 
evaluation, plasma protein binding assays, the use of primary human 
hepatocyte cultures, liver S9 fractions, or microsomes, along with 
advanced 3D liver models, could be considered (Peeters et al., 2020; N 
et al., 2023). Additionally, confirming the absence of bioactivity of the 
M1 and M2 metabolites through in vitro testing would also be required.

The study found that HCY13 exposure led to the upregulation of 
PPARG and DGAT2, along with the downregulation of CD36, high
lighting a complex regulatory environment. While PPARG typically ex
acerbates steatosis (Ratziu et al., 2008; Fernández-Miranda et al., 2008; 
Ahmadian et al., 2013; Tontonoz and Spiegelman, 2008), and DGAT2 
enhances TG synthesis (Yen et al., 2008; Cases et al., 1998, 2001), the 
downregulation of CD36—usually upregulated by PPARγ (Maréchal 
et al., 2018; Febbraio et al., 2001)—suggests alternative regulatory 
mechanisms, such as post-transcriptional regulation by microRNAs or 
HCY13-specific effects that alter normal signaling pathways (Bravo-Ruiz 
et al., 2021; Niculite et al., 2019; Varga et al., 2011; Pan et al., 2022; Lee 
et al., 2017). Moreover, the downregulation of CD36 is likely an adap
tive response to intracellular fat accumulation driven by de novo lipo
genesis, wherein the cell reduces FA uptake to prevent further lipid 
overload. The response may have differed at earlier time points, 
potentially exhibiting higher CD36 expression. This interplay likely 
drives the lipid accumulation observed, contributing to the steatogenic 
phenotype despite the altered PPARγ-CD36 relationship. Future studies 
could explore earlier time points, like 8 h post-exposure, to capture MIE 
dynamics and clarify the initial regulatory responses to HCY13. This 
would deepen understanding of early gene expression changes and the 
mechanisms contributing to steatosis. However, the 72-h findings 
robustly establish the key regulatory changes linked to HCY13 exposure, 
providing a solid foundation for risk assessment.

A notable strength of this case study was using the BMC approach 
across significantly affected biomarkers at both the gene expression and 
functional levels, particularly TG accumulation—a hallmark of steatosis. 
Identifying the most sensitive biomarker with the lowest BMCL for 
PoDNAM from functional data enhances confidence in the risk assessment 
(Sand et al., 2006; Yasuhiko et al., 2022), as this approach captures 
biologically significant effects beyond gene expression changes alone 
(Burden et al., 2021; Crump et al., 2010).

The overall risk assessment is based on a comparison between the 
maximum internal liver concentration (Cmax liver) and the PoDNAM, 
derived from the nominal concentration in culture medium. The use of 
the nominal concentration is justified by the physicochemical properties 
of HCY13. It is known that parameters such as volatility, solubility, 
hydrophobicity, and binding to plastic can significantly influence a 
compound’s in vitro distribution (Nicol et al., 2024). Among these, the 
octanol/water partition coefficient (log Po/w) is a key determinant, as 
chemicals with a high log Po/w (>4) tend to significantly bind to plastic, 
reducing their bioavailable concentration in in vitro assays (Henneberger 
et al., 2021; Nicol et al., 2024). For HCY13, this concern is minimal, 
given its experimentally measured log Po/w of 2.54 (). Moreover, HCY13 
has a very low vapor pressure (Table 2) and a negligible Henry’s Law 
constant (1.54e-5 Pa-m3/mol, calculated using HENRYWIN v3.21 from 
EpiSuite, EPA), indicating minimal evaporation. Collectively, these 
physicochemical characteristics of HCY13 suggest that it remains pre
dominantly in the culture medium, resulting in an actual concentration 
(Cfree) that closely approximates the nominal concentration (Cnominal) 
(Proença et al., 2021). An even more precise assessment would involve 
using the intracellular concentration (Ccell) from the in vitro system, as it 
better reflects the biologically effective dose. Estimating Ccell would, 
however, require the integration of advanced in vitro dosimetry models 
that account for cellular uptake, binding, and distribution (Bouhifd 
et al., 2010). Alternatively, the PoDNAM could be compared to predicted 
concentrations in the plasma supplying the liver (Cmax plasma) rather than 
the Cmax liver (Nicol et al., 2024; Magurany et al., 2023).

A key aspect of NGRA is distinguishing between adaptive and 
adverse toxicological responses. Steatosis, while not a disease per se, is 

associated with broader liver toxicity due to lipid accumulation in he
patocytes, which can impair liver function. The NGRA approach in this 
study estimates bioactivity thresholds that are typically lower and more 
conservative than adversity thresholds derived from animal studies that 
measure apical endpoints (Dent et al., 2018; Paul Friedman et al., 2020). 
The PoDNAM for deriving BERs was based on a functional biomarker 
assessed after short-term repeated exposure in a human-relevant in vitro 
model. This resulted in a range of significantly high BERs, indicating a 
substantial margin of safety. A high BER suggests that the bioactivity 
threshold is well above the estimated human exposure, reducing the 
need to distinguish between adaptation and adversity. However, when 
BER values are close to 1, further mechanistic investigation is necessary 
to determine if observed bioactivity may lead to adverse health effects. 
In such cases, enhancing the test system’s biological coverage—for 
example, by testing mitochondrial beta-oxidation, mitochondrial 
disruption, or ER stress, as outlined in the AOP network by Verhoeven 
et al. (2024)—is essential. This helps to understand the mechanistic 
involvement of the system better and accurately assess potential risks 
(Dent et al., 2021; Middleton et al., 2022; Schmeisser et al., 2023; 
Magurany et al., 2023; Berridge et al., 2024).

This case study employed a WoE approach to assess the MoA, 
providing a robust, biologically-based framework for evaluating sys
temic toxicants (Simon et al., 2014; Clewell, 2005; Determining Modes 
Of Action for, 1999). Our results are consistent with traditional 
animal-based hazard and risk assessment, which deemed HCY13 safe at 
a maximum on-head concentration of 2.5% (w/w) (). Importantly, 
traditional studies did not identify the liver as a target organ in rats after 
90-day oral exposure to HCY13. In humans, the primary enzymes 
involved in the metabolism of HCY13 are CYP1A2 and CYP3A4. While 
these enzymes have varying metabolic capacity between humans and 
laboratory animals (Hammer et al., 2021; Abass et al., 2023), no 
species-specific variation in risk of liver steatosis is found for HCY13.

5. Conclusion

This ab initio NGRA of HCY13 for liver steatogenic risk adhered to a 
protective, conservative approach, gradually refining towards real- 
world scenarios using probabilistic models and considering the actual 
versus nominal concentrations in in vitro assessments. NAMs provided 
robust insights into exposure and bioactivity, achieving an overall me
dium level of certainty. Our findings indicate that HCY13 is unlikely to 
present significant steatogenic liver toxicity risks under the assumed use 
conditions, based on the tools and test system applied in the assessment. 
Continued development and implementation of NAMs are expected to 
strengthen confidence in non-animal safety assessments and reinforce 
their increasing role in regulatory decision-making. While there is room 
for further refinement, this case study underscores the practical appli
cability of NAMs within a tiered NGRA framework.
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