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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Martin Van den berg This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of
repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools
consistently flagged hepatotoxic potential, likely due to HCY13’s trifluoromethyl group, which is known to
interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation.
AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13
concentrations over 72 h. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA,
APOB, ACOX1, CPTI1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic
hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure
(PoDnam) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models
estimated internal liver concentrations (Cmax liver) of HCY13, ranging from 4 to 20 pM. All PoDyaym values
significantly exceeded the predicted Cpax liver, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver
steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in
vitro assays and computational models to protect human health and support regulatory decision-making without
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1. Introduction

Driven by scientific advancements, ethical concerns, economic con-
siderations, and legislative changes, modern toxicology increasingly
prioritizes using animal-free methods for chemical safety assessment.
New Approach Methodologies (NAMs) are central to this paradigm shift
by incorporating innovative techniques such as in vitro methods (e.g.
human cell cultures), in silico approaches (computer modeling), in
chemico techniques (chemical interactions), and ex vivo (isolated tissues)
methods. These methodologies offer the potential to provide more
human-relevant data, reducing reliance on animal testing and
improving the efficiency and accuracy of risk assessments through a
mechanistic approach. The Next Generation Risk Assessment (NGRA)
exemplifies the integration of NAMs within a tiered framework tailored
to a specific exposure scenario. This approach is hypothesis-driven and
focused on harm prevention in humans. It involves evaluating existing
data and generating new targeted information using NAMs in a tiered,
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iterative manner to ensure a comprehensive chemical safety assessment.
Supported by recent research and guidelines, NGRA emphasizes trans-
parent documentation of the logical framework and uncertainties (Dent
et al., 2018; Dent et al., 2021; Gautier et al., 2020; Ouedraogo et al.,
2022; Najjar et al., 2024; Assaf Vandecasteele et al., 2021; Bury et al.,
2021a; Directorate and Committee, 2021; Gilmour et al., 2023; Luo
et al., 2023; OECD, 2023; Ebmeyer et al., 2024; Baltazar et al., 2020).
Being exposure-led, NGRA emphasizes that a chemical is unlikely to
cause adverse effects on human health if internal exposure levels are
well below those needed for biological activity. Physiologically-based
pharmacokinetic (PBPK) models are used to estimate internal expo-
sure. In contrast, in silico models and human-relevant in vitro assays are
employed to flag and assess potential effects by targeting early biolog-
ical changes before adverse effects manifest, translating into a Point of
Departure (PoDyan). A thorough understanding of the biological path-
ways underlying adverse outcomes significantly increases confidence
that the assessment is protective for the mode of action (MoA). Adverse

E-mail addresses: sara.sepehri@vub.be (S. Sepehri), dinja.de.win@vub.be (D. De Win), anja.heymans@vub.be (A. Heymans), freddy.van.goethem@vub.be (F. Van
Goethem), robim.marcelino.rodrigues@vub.be (R.M. Rodrigues), vera.rogiers@vub.be (V. Rogiers), tamara.vanhaecke@vub.be (T. Vanhaecke).

https://doi.org/10.1016/j.yrtph.2025.105794

Received 9 October 2024; Received in revised form 17 February 2025; Accepted 27 February 2025

Available online 28 February 2025

0273-2300/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


https://orcid.org/0000-0003-1023-7987
https://orcid.org/0000-0003-1023-7987
https://orcid.org/0009-0008-8510-0970
https://orcid.org/0009-0008-8510-0970
https://orcid.org/0000-0002-5822-3245
https://orcid.org/0000-0002-5822-3245
https://orcid.org/0009-0000-5672-0048
https://orcid.org/0009-0000-5672-0048
https://orcid.org/0000-0003-2927-6791
https://orcid.org/0000-0003-2927-6791
https://orcid.org/0000-0003-0635-7740
https://orcid.org/0000-0003-0635-7740
https://orcid.org/0000-0002-6685-7299
https://orcid.org/0000-0002-6685-7299
mailto:sara.sepehri@vub.be
mailto:dinja.de.win@vub.be
mailto:anja.heymans@vub.be
mailto:freddy.van.goethem@vub.be
mailto:robim.marcelino.rodrigues@vub.be
mailto:vera.rogiers@vub.be
mailto:tamara.vanhaecke@vub.be
www.sciencedirect.com/science/journal/02732300
https://www.elsevier.com/locate/yrtph
https://doi.org/10.1016/j.yrtph.2025.105794
https://doi.org/10.1016/j.yrtph.2025.105794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.yrtph.2025.105794&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Sepehri et al.

Outcome Pathways (AOPs) provide a framework by linking mechanistic
molecular and cellular events to adverse outcomes. They establish
connections between Key Events (KEs) through Key Event Relationships
(KERs), starting with the Molecular Initiating Event (MIE) and culmi-
nating in the Adverse Outcome (AQO) at the organism level. This sys-
tematic approach enables a more detailed and mechanistic
understanding of how chemicals cause harm, thereby enhancing the
predictive power and reliability of NGRA (Bajard et al., 2023; Pallocca
et al., 2022). Dividing the PoDyaym by the estimated internal exposure
yields the Bioactivity-Exposure Ratio (BER). A BER greater than 1
generally suggests that the bioactivity threshold surpasses estimated
human exposure, indicating potential safety (Health Canada, 2021;
Middleton et al., 2022). However, the interpretation of BER values is still
being refined, and further evidence is needed to establish firm regula-
tory thresholds for different types of NAM data (Wambaugh, 2024;
Cronin et al., 2023).

Since March 2013, when the European Union (EU) fully imple-
mented the ban on animal testing and marketing for cosmetics, the
importance of NGRA has grown. This shift became even more crucial
because determining a PoD from repeated dose toxicity studies, as
traditionally done in animals, was no longer possible. NGRA case studies
have proven effective in protecting human health, particularly for local
toxicity endpoints such as skin sensitization (Gilmour et al., 2023;
OECD, 2023; Bialas et al., 2023). However, introducing new cosmetics
on the EU market remains challenging due to the need for animal-free
methods to assess complex toxicological endpoints like repeated dose
systemic and organ toxicity. Although some NGRA case studies assessing
systemic toxicity have been conducted using data-rich, generally safe
compounds like fragrances and preservatives (Directorate and Com-
mittee, 2021; Ebmeyer et al., 2024; Baltazar et al., 2020; Troutman
et al., 2015; OECD, 2020; Bury et al., 2021b), a critical challenge re-
mains: determining whether NGRA can also effectively identify and
prohibit toxic compounds from the market. Achieving a higher confi-
dence level requires evaluating a broader range of ingredients. In this
context, this case study applies NGRA principles using an ab initio
approach, assuming no existing in vivo safety data, to assess the hypo-
thetical risk of triggering liver steatosis from HC Yellow No. 13 (HCY13)
(Fluorgelb II), a widely used fluorinated hair dye. Although both hep-
atotoxicity and mutagenicity were flagged during in silico hazard iden-
tification, liver steatosis was selected as the primary MoA for evaluation.

Regulated under Annex III of the Cosmetic Regulation (EC) No.
1223/2009, HCY13 is currently permitted at a maximum on-head con-
centration of 2.5% (w/w) in both oxidative and non-oxidative hair dye
formulations ().

2. Materials and methods

Fig. 1 illustrates an adapted NGRA framework for the ab initio sce-
nario, where safety evaluation is carried out based on hypothesis-driven
in vitro testing combined with computational modeling and a BER for
risk characterization. Berggren et al. (2017) suggest exit points in the
lower tiers (0 and 1) via Threshold of Toxicological Concern (TTC) or
Read-Across (RAx) approaches. However, RAx was deemed unsuitable
in this study due to the lack of data-rich structural analogs for HCY13.
Instead, the internal TTC (iTTC) approach has been applied to assess
potential risks from identified metabolites (Hewitt et al., 2013; Pawar
et al., 2019; Lester et al., 2023; Lizarraga et al., 2023; Berggren et al.,
2017). The overall workflow includes three tiers and 10 steps, with
relevant in silico tools and the used in vitro model briefly outlined in
Fig. 1. Supporting data for interactions with transporters, Cytochromes
P450, and UGT (Uridine 5'-diphosphate-glucuronosyltransferases) en-
zymes (Tier 0) are detailed in Supplementary Material 1, which also
includes information on the predicted metabolites. Information on an-
alogs used in Tier 1 during the Hypothesis Generation, following step 5
of the Weight-of-Evidence (WoE) approach, is in Supplementary Mate-
rial 2. For Tier 2: Bioactivity Characterization, Supplementary Material
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3 provides cell culture details, Supplementary Material 4 covers the
Neutral Red Uptake (NRU) assay for cell viability, and Supplementary
Material 5 includes the functional and gene expression assays related to
lipid accumulation. The Benchmark Concentration (BMC) approach is
described in Supplementary Material 6.

3. Results

Tier 0: Identifying the Exposure Scenario, Chemical identity,
and Collecting Data.

3.1. Identify use/exposure scenario: calculation of the externally applied
dose

Table 1 presents external dose calculations assuming the maximum
permitted concentration of HCY13 for a conservative analysis
(SCCS/1322/10, 2011). While commercial products may not always use
the highest concentration, proprietary formulations are generally inac-
cessible, justifying the use of the regulatory maximum. All calculations
assume 100% purity of HCY13.

To adopt a conservative approach, as outlined in SCCS/1647/22
(SCCS/1647/22, 2023), a daily exposure value in mg/day is not calcu-
lated for hair dyes due to their low frequency of application, i.e. once per
week for non-oxidative hair dyes. Consequently, the daily dose is not
averaged over a 7-day period in this context.

3.2. Chemical identity: molecular structure

Characterizing the physical form, molecular weight, and physico-
chemical specifications of HCY13 is essential for understanding its
behavior (SCCS/1647/22, 2023). The chemical identity specifications of
HCY13 retrieved from SCCS/1322/10 (2011) are summarized in Table 2
(SCCS/1322/10, 2011). HCY13, a yellow powder, contains a nitro group
(NOy, circled in green) and a trifluoromethyl group (CFs, circled in or-
ange), significantly influencing its reactivity and cosmetic use. The NO,
group contributes to HCY13’s vibrant color properties, making it a
valuable dye in cosmetic formulations. However, NO, groups are
electron-withdrawing, affecting the electronic distribution within the
molecule and, hence, its reactivity and stability (Kumar et al., 2021).
They can undergo metabolic activation in biological systems, forming
reactive intermediates, potentially leading to cytotoxicity or mutage-
nicity, raising concerns about the safety of prolonged exposure to
NO;-containing dyes (SCCS Opinion on Nitrosamines and, 2012).
Additionally, the presence of a CF3 group in HCY13 categorizes it as a
non-polymeric per- and polyfluoroalkyl substance (PFAS), according to
OECD: “any chemical with at least a perfluorinated methyl group (CF3)
or a perfluorinated methylene group (CF3) is a PFAS (without any
H/Cl/Br/I atom attached to it)” (Wang et al., 2021; Hammel et al.,
2022). Exposure to PFAS has been linked to numerous adverse health
effects, notably liver steatosis or fatty liver disease. This association is
linked to PFAS compounds’ capacity to disrupt lipid metabolism, trig-
gering oxidative stress and impairing fatty acid (FA) p-oxidation,
resulting in lipid accumulation within hepatocytes. While the precise
mechanism remains elusive, research suggests the potential involvement
of PPARA activation and perturbations in the lipolysis-lipogenesis bal-
ance and the depletion of liver glutathione levels, as evidenced across
various epidemiological, animal, and in vitro studies (Zhao et al., 2023;
David et al., 2023; Zhang et al., 2023; Sadrabadi et al., 2024; Chen et al.,
2020; Khan et al., 2023; Hyotylainen et al., 2021; Lu et al., 2019;
Goodrich et al., 2023; India-Aldana et al., 2023; Ojo et al., 2021). The
CFs-group in HCY13 may thus contribute to such effects.

While both hepatotoxicity and mutagenicity were predicted, only
liver steatosis was selected to exemplify NGRA for this MoA. Indeed, the
CF3 group in HCY13 might play a critical role in reducing its mutagenic
potential. As a strong electron-withdrawing group, -CF3 lowers the
electron density on the aromatic ring and introduces steric hindrance,
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1. Identify Use/Exposure Scenario:
HCY13 is used as a 2.5% (w/w) (max. allowance) dye in non-oxidative hair color, dissolved in hot water.

2. Chemical Identity:
HCY13 identity data (structural formula, CAS number, INCI name, molecular weight) obtained from SCCS/10/1322
(2011), SMILES notation used for modeling.

3. Collect Supporting Data:
Physico-Chemical Properties: Sourced via SCCS/1322/10 (2011).
In Silico ADME Prediction: Use SMILES with ADMET Predictor 11.0 and OECD QSAR Toolbox for in silico
simulations of key absorption, distribution, metabolism and excretion parameters. (Supplementary Material 1)
Active Group Predictions: Using HCY13's structure and SMILES annotation, four in silico tools were applied to
identify hepatotoxicity alerts: OECD QSAR Toolbox, VEGA QSAR, SA Predictor, and Vienna Livertox Workspace.

4. Obtaining Internal Liver Concentration:

Dermal Route PBPK Modeling: Using 0.13% of the applied dose for the dermal bioavailability
(SCCS/1647/22(2023)). Two kinetic models (compartmental and PBPK) are used with parameters imported into
Gastroplus 9.9 via ADMET Predictor 11.0. The compartmental model adjusts BW and liver metabolism, while the
PBPK model, tailored for a 30-year-old female (75 kg), adjusts renal clearance and liver metabolism. A consistent BW
of 75 kg is used for all exposure assessments.

5. Mode of Action (MoA) Hypothesis Generation:
Weight-of-Evidence (WoE) Analysis: Using WoE analysis, formulate a steatogenic liver toxicity hypothesis based
on molecular structure and active group predictions. Using GenRA, identify structural analogs with a Tanimoto
coefficient >0.8 and evaluate structural alerts with HESS via the OECD QSAR Toolbox. (Supplementary Material 2)

6. Targeted Testing Using Human-Relevant Test System In Vitro:
AOP-Based Liver Steatosis Characterization: hSKP-HPC used to assess HCY13 impact on lipid metabolism
following the AOP suggested by Verhoeven et al. 2024.
hSKP-HPC Cell Culture: hSKP cells isolated and differentiated into hepatocyte-like cells. (Supplementary Material 3)
Exposure Setup: Post cytotoxicity assessment, cells exposed to sub-cytotoxic concentrations of HCY13 (10-100 uM)
for 72h, Na-VPA (1.2-12 mM) as positive and solvent-only negative controls. (Supplementary Material 4)
Assays: (Supplementary Material 5)
Lipid Accumulation Assessment: Neutral Lipid Staining according to Boeckmans et al. (2021). Flow Cytometric
Analysis of Neutral Lipids according to Boeckmans et al. (2020). TG Quantification using the E-BC-K261 kit from
Elabscience according to the manufacturer protocol.
Gene Expression (RT-gPCR): Key genes related to lipid metabolism and liver function analyzed: AHR, PPARA,
LXRA, APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG.

7. Biokinetic Refinement (Population Estimation, Metabolites Refinement):
PBPK Models and Population Simulation: Gastroplus 9.9's population simulator with Monte Carlo simulations
(PEAR) was used to estimate liver concentrations (C,__, ....) and variability across a diverse virtual population.
Metabolites Refinement: The iTTC approach, as outlined by Dent et al. (2021), was applied to assess potential liver
risks from predicted metabolites. Using GastroPlus 9.9, maximum plasma concentrations were predicted for both
single-object and population levels.

8. Points of Departure Calculation Using BMC Approach:
BMC Analysis: Concentration-response curves for triglyceride accumulation were modeled with a BMR of 20%,
while gene expression changes were analyzed with a BMR of 50%. These BMR values were used in PROAST)|
70.1 (https://proastweb.rivm.nl) software to generate BMC,_ confidence intervals, with the BMC,_serving as the
PoD,,,, for each biomarker. (Supplementary Material 6)

9.Calculation of Bioactivity-Exposure Ratio Based on Lowest PoD,, :
BER Calculation: The BER was calculated by comparing the lowest in vitro bioactivity threshold (PoD,,,,), derived
from the lowest BMC,, with predicted human liver exposure levels (C__ ..). A BER greater than 1 indicates a
potentially sufficient margin of safety. In contrast, a BER below 1 may warrant further investigation or raise potential
concerns, depending on the context and uncertainty factors.

10.Risk Evaluation and Uncertainties Assessment:
Uncertainty Classification: Based on the robustness and reliability of the data, certainties were qualitatively
classified as low (L), medium (M), or high (H).

(caption on next page)
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Fig. 1. The NGRA framework used to assess the safety of 2.5% (w/w) HC Yellow No. 13 under non-oxidative conditions, focusing on liver steatosis. The workflow is
divided into 4 tiers, covering 10 steps: Tier 0: Gathering Information (Steps 1-3): Includes identifying the use/exposure scenario, chemical identity, and supporting
data, including in silico ADMET predictions and physicochemical properties. Tier 1: Hypothesis Generation (Steps 4-5): Involves estimating internal liver con-
centrations through PBPK modeling (dermal exposure) and generating a MoA hypothesis based on WoE analysis. Tier 2: Bioactivity Characterization (Steps 6-7):
Involves targeted in vitro testing using hSKP-HPC for liver steatosis endpoints and refining biokinetic and population-level estimates. Tier 3: Risk Characterization
(Steps 8-10): Includes determining PoD using BMC analysis, calculating the BER, and evaluating uncertainties for risk assessment. [HCY13: HC Yellow No. 13, CAS:
Chemical Abstracts Service, INCI: International Nomenclature of Cosmetic Ingredients, SCCS: Scientific Committee on Consumer Safety, SMILES: Simplified Mo-
lecular Input Line Entry System, OECD QSAR Toolbox: Organisation for Economic Co-operation and Development Quantitative Structure-Activity Relationship
Toolbox, PBPK: Physioligically-based Pharmacokinetic, BW: Body Weight, MoA: Mode of Action, WoE: Weight-of-Evidence, GenRA: Generalized Read-Across, HESS:
Hazard Evaluation Support System, hSKP-HPC: human Skin-derived Precursor Hepatocyte-like Cells, AHR: Aryl Hydrocarbon Receptor, PPARA: Peroxisome
Proliferator-Activated Receptor Alpha, LXRA: Liver X Receptor Alpha, APOB: Apolipoprotein B, ACOX1: Acyl-CoA Oxidase 1, CPT1A: Carnitine Palmitoyltransferase
1A, FASN: Fatty Acid Synthase, SCD1: Stearoyl-CoA Desaturase 1, DGAT2: Diacylglycerol O-Acyltransferase 2, CD36: Cluster of Differentiation 36, PPARG:
Peroxisome Proliferator-Activated Receptor Gamma, TG: Triglyceride, NaVPA: Sodium Valproate, PEAR: Population Estimates for Age-Related Physiology, iTTC:
internal Threshold of Toxicological Concern, BMC: Benchmark Concentration, PoD: Point of Departure, NAM: New Approach Methodologies, BMR: Benchmark
Eesponse, BMC;: Benchmark Concentration Lower Bound, BER: Bioactivity Exposure Ratio].

hampering metabolic activation pathways such as hydroxylamine for-
mation, typically associated with DNA reactivity (Hewitt et al., 2013;
Pawar et al., 2019; Lester et al., 2023; Lizarraga et al., 2023).

Table 1

Calculation of the externally applied dose using 2.5% (w/w) HCY13 in a hypothetical
hair dye formulation (SCCS/1647/22, 2023). *Assuming that 1 ml of product is
equivalent to 1 g [C: Concentration, A: Amount per application, R: Retention factor].

Use concentration (C) 2.5% (maximum Annex III of EU legislation, Ref

3.3. Collect supporting data

permitted) no. 261
Amount per 35g SCCS/1647/22 ( The basic physicochemical properties of HCY13 are shown in Table 2
application (A) 5CCS/1647/22, 2023) (0. To ensure chemical structure identification is interpretable by in silico
Retention factor (R) 0.1 SCCS/1647/22 (

software, formats like the Simplified Molecular Input Line Entry System

SCCS/1647/22, 2023) ..
(SMILES) have been used (Weininger, 1988).

- > Amount applied (C/100*A*R) = (2.5/100)*35*0.1*1000 = 87.5 mg

3.3.1. Insilico absorption, distribution, metabolization, excretion (ADME)
prediction

A key benefit of employing ADMET Predictor 11.0 software, devel-
oped by Simulation plus®, is its capability to directly import ADME
parameters into subsequent software (GastroPlus) to predict the

Table 2

Chemical identity specifications and physicochemical properties. Rows “Name” to
“Relative density”, of HCY13 retrieved from (SCCS/1322/10, 2011). Rows “ECCS
classification” to “Interactions with transporters and Cytochromes P450s” predicted

by ADMET Predictor 11.0. Supplementary Material 1 presents the predicted in-
teractions of HCY13 with various transporters and cytochrome P450 enzymes, as
determined by ADMET Predictor 11.0, along with specific kinetic parameters where

applicable. [ECSS: Extended Clearance Classification System].

Name HC Yellow 13
CAS no. 10442-83-8
Molecular formula CoHgF3N,03
2D chemical structure “
i
HO/\/ =

INCI names

Commercial names

Molecular weight

Log Po/w at PH 7, 23°C

Appearance

Purity

Water solubility at 20°C

Melting point

Boiling point

Vapor pressure at 20°C

Relative density at 20°C

ECCS classification

Fraction unbound in plasma (Fup)

Volume of distribution human
Vo)

Blood:plasma ratio (Rbp)

Hepatic intrinsic clearance (CL)

Renal excretion

Interaction with transporters and
Cytochromes P450s

N-(2-Hydroxyethyl)-2-nitro-4-
trifluormethyl-aniline;
1-(2-Hydroxyethyl)amino-2-nitro-4-
trifluormethylbenzene

Fluorgelb II, Cos 128, COLIPA B102
250.18 g/mol

2.54 (determined by EC-A.8 method)
Yellow crystalline powder

99% HPLC

506 mg/L (determined by EC-A.6 method)
74.7 °C

227.1°C

3.1¥10°-8 hPa

1.45

2

8.819 %

1.571L

1.003

30.31 pL/min/million hepatocytes
No

Supplementary Material 1

maximum liver concentration. Both software tools were utilized under
the Simulation Plus University + program, providing free academic
access. To accurately estimate the internal exposure concentration using
PBPK modeling in Tier 1, extra chemical-specific parameters such as
Blood: plasma ratio (Rbp), the fraction unbound in plasma (Fup), liver
clearance (CL), and the volume of distribution (V,), are needed as input
data. In this study, the predicted required data are summarized in
Table 2. HCY13, classified as class 2 under the Extended Clearance
Classification System (ECCS), is primarily cleared via liver metabolism
(Varma et al., 2015). It exhibits a Fup of 8.819%, indicating high plasma
protein binding, which suggests that the majority of the compound is
bound to plasma proteins such as albumin, thereby reducing the free
fraction availabile for tissue distribution and metabolism (Yun et al.,
2021). With a V4 of 1.571 L, HCY13 remains largely confined to the
vascular space and does not extensively distribute into tissues. The Rbp
near 1 suggests that HCY13 has similar affinities for plasma and the
cellular components of the blood. Collectively, these characteristics
suggest that HCY13 exhibits extensive plasma protein binding and is
primarily confined to the vascular compartment with limited tissue
interaction. HCY13 shows a high affinity for uptake via organic anion
transporter 1 (OAT1, Km = 22.502 pM) but low affinity for organic
cation transporter 1 (OCT1, Ky, = 193.009 pM), suggesting differential
cellular uptake influenced by transporter expression (Nigam et al., 2015;
Roth et al., 2012; Suo et al., 2023; Lozano et al., 2013; Granados et al.,
2021). Furthermore, HCY13 is unlikely to inhibit the Bile Salt Export
Pump (BSEP), as indicated by a high IC5¢(log) of 73.4 pM, suggesting a
minimal impact on bile acid transport (Chan and Benet, 2018). HCY13
exhibits rapid hepatic metabolism with an intrinsic clearance of 30.31
pL/min/million hepatocytes, as detailed in Supplementary Material 1. It
is likely metabolized by Cytochrome P450 (CYP) enzymes (particularly
CYP3A4, CYP1A2, CYP2C8, CYP2C19, and CYP1A2) and Uridine
5'-diphosphate-glucuronosyltransferases (UGT) enzymes (UGT1AS,
UGT1A9, UGT2B7) (Rowland et al., 2013). It strongly inhibits CYP1A2
(K; (inhibition constant) = 3.276 pM, prediction confidence: 95%),
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suggesting potential for drug-drug interactions affecting CYP1A2 sub-
strates (Bhatt et al., 2022). Regarding the identified metabolites, simu-
lations revealed potential metabolites in various environments,
including rat liver, human skin, gut microbiome, and liver. In skin
metabolism, the OECD QSAR Toolbox identified a single metabolite, M3
(OCCN=C1C=CC(=CC1 = [N+](O)[O-DC(F)(F)F), the imino-enamino
tautomer of the parent compound. In contrast, the human microbial
and rat liver simulations produced 16 and 4 metabolites, respectively,
with one common metabolite, M1 (NC1=CC=C(C(F)(F)F)C=C1[N+]
([O-1) = 0). Further analysis with ADMET Predictor also identified M1
and another metabolite, M2 (O=CCNC1=CC=C(C(F)(F)F)C=C1[N+]
([0-1) = 0), in the human liver. These metabolites are primarily pro-
cessed by CYP1A2, CYP2C19, and CYP3A4, with M1 metabolized at 74%
and M2 at 26%, specifically M1 by CYP1A2 (10.7%), CYP2C19 (49.1%),
and CYP3A4 (4.2%), and M2 by CYP2C19 (21.8%) and CYP3A4 (0.9%)
(Supplementary Material 1).

3.3.2. Active group prediction

Centering on the molecular structure of HCY13, which includes the
nitro and the trifluoromethyl hepatotoxic groups, and considering
ADME predictions indicating liver excretion as the primary route, our
analysis further focused on its possible hepatotoxic potential. Using
SMILES annotation, four freely available in silico tools were applied:

e HESS (OECD QSAR Toolbox): A mechanistic tool utilizing the Hazard
Evaluation Support System (HESS), which categorizes in vivo toxicity
for 500 chemicals across 14 types (Sakuratani et al., 2013; Safety
Assessment Division, Chemical Management Center, National Insti-
tute of Technology and Evaluation, 2023), identified a
flutamide-induced hepatotoxicity alert with a 61% similarity index
using the Dice method.

e VEGA-IRFM: A mechanistic tool employing the IRFMN-v.1.0.1 hep-
atotoxicity model with SARpy, which identifies structural alerts,
highlighted the CF3-group as a relevant hepatotoxic fragment with
86% accuracy (Pizzo et al., 2016; Gadaleta and Benfenati, 2022).

e SA Predictor: This statistical tool, which offers rapid toxicity
screening through structural alerts (61), flagged both NO, and CF3
groups as potential hepatotoxic moieties.

e Vienna Livertox Workspace: A mechanistic tool using Drug-Induced
Liver Injury (DILI) models with a random forest algorithm (500 trees
and RDKit descriptors) based on a dataset of 966 compounds pre-
dicted a 0.72 positive DILI effect in humans with accuracies ranging
from 0.59 to 0.68 (Montanari et al., 2020; Vienna LiverTox, 2020).
HCY13 falls within the applicability domain of all four models. The
combined use of statistical and mechanistic in silico tools, as rec-
ommended by the International Cooperation on Cosmetics Regula-
tion (ICCR) (Teixeira do Amaral et al., 2014), consistently indicated
a hepatotoxic alert for HCY13.

Tier 1: Obtaining Internal Organ Concentrations and Hypothesis
Generation.

3.4. Obtaining the internal liver concentration using PBPK modeling via
dermal route administration

To determine the internal liver concentration, it is essential to first
calculate the fraction of the applied hair dye dose that penetrates the
scalp and thus an estimate of HCY13’s dermal absorption is needed. This
study used a dermal absorption value of 3.13 pg/cm? (mean + 2 SD),
corresponding to 0.13 % of the applied dose. This value was derived
from an in vitro dermal absorption study (compliant with OECD 428)
conducted on pig skin with a typical non-oxidative hair dye formulation
containing 2.5% (w/w) HCY13, as detailed in SCCS/1322/10
(SCCS/1322/10, 2011). For an externally applied dose of 87.5 mg, this
results in a dermally bioavailable dose of 0.11 mg.
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3.4.1. PBPK modeling

Following predictions from the ADMET Predictor, GastroPlus 9.9
was used to estimate maximum liver concentrations (Cpax liver) USing
two deterministic kinetic models: a compartmental model and a PBPK
model. The software was accessed through the Simulation Plus Uni-
versity + program at no cost. The compartmental model characterizes
compound distribution and elimination using parameters such as CL, Vg,
and transfer rate constants (Chen and Om Abuassba, 2021) and allows
adjustments for BW and liver clearance parameters by selecting the
hepatic clearance mechanism (cytochromes, total microsomes, and he-
patocytes). All options were explored due to the lack of precise data on
HCY13’s metabolism.

The PBPK model, tailored for a 30-year-old female weighing 75 kg,
provides a detailed representation incorporating tissue weights, vol-
umes, and physiological parameters, allowing adjustments for renal
clearance and liver metabolism (Jones and Rowland-Yeo, 2013; Simu-
lations-plus, 2017). A consistent Body Weight (BW) of 75 kg was used,
reflecting the PBPK model’s default setting, despite other guidelines
suggesting 60 kg (SCCS) (SCCS/1647/22, 2023) and 80 kg (U.S. public
health) (Agency for Toxic Substances and Disease Registry and U.S.
Department of Health and Human Services PHS, 2023) for adults.

Both kinetic models estimated liver concentrations following intra-
venous administration of 0.11 mg HCY13, chosen to mimic systemic
absorption from the scalp application over a 168-h (7-day) period. The
compartmental model predicted the Cpax liver to be 4 pM, while the PBPK
model predicted concentrations of 15 pM. These concentrations were
calculated with renal clearance set to zero based on HCY13’s ECCS
classification (Table 2), yielding a narrow range under both models by
exploring various liver metabolism clearance types.

3.5. Mode of action (MoA) hypothesis generation

Based on the data gathered so far, we hypothesized that HCY13 may
pose a concern for liver toxicity. To further substantiate this hypothesis,
an extra WoE analysis was conducted by identifying 27 analogs of
HCY13 with a Tanimoto coefficient exceeding 0.8 using the GenRA
software from EPA (U.S Environmental Protection Agency) (Schultz and
Cronin, 2017; Cronin et al., 2017). The structural alerts of these analogs
were then assessed using the HESS within the OECD QSAR Toolbox.
Notably, 21 of these analogs triggered a flutamide hepatotoxicity alert,
similar to the warning observed with HCY13 itself (Supplementary
Material 2). Considering the structural resemblance of these analogs and
the consistent patterns observed, it is reasonable to assume that HCY13
carries a general risk of liver toxicity.

Furthermore, we hypothesized liver steatosis as the mode of action
(MoA). This hypothesis builds on the earlier discussion of the CF3 group
in HCY13, which is similar to PFAS compounds that disrupt lipid
metabolism, induce oxidative stress, and impair fatty acid p-oxidation,
leading to lipid accumulation in hepatocytes—a hallmark of steatosis.
The CF3 group may contribute to these effects through potential PPARA
activation, disturbances in the lipolysis-lipogenesis balance, and deple-
tion of liver glutathione levels, as discussed earlier in the context of
PFAS exposure (Zhao et al., 2023; Zhang et al., 2023; Sadrabadi et al.,
2024; Chen et al., 2020; Khan et al., 2023; Hyotylainen et al., 2021; Lu
et al., 2019; India-Aldana et al., 2023; Ojo et al., 2021; David et al.,
2023; Goodrich et al., 2023; Hara and Zeng).

Tier 2: Bioactivity Characterization.

3.6. Targeted testing using a human-relevant test system in vitro

Following the MoA hypothesis and guided by a mechanistically
anchored AOP approach (Verhoeven et al., 2024), we subsequently
evaluated the steatotic activity of HCY13 using a human in vitro stem
cell-derived hepatic model (hSKP-HPC), previously shown to be capable
of detecting steatotic compounds (Buyl et al., 2023; Rodrigues et al.,
2014, 2016; Boeckmans et al., 2021; Natale et al., 2018). Human
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skin-derived precursors (hSKP) were isolated from postnatal foreskin
samples of young boys (Supplementary Material 3) (Rodrigues et al.,
2016; De Kock et al., 2011; De Kock et al., 2012; Escher et al., 2020;
Neutral Red Uptake Assay SCOPE, 2022; Verhoeven et al., 2024). The
cells were differentiated into hepatocyte-like cells (hSKP-HPC) through
a sequential process completed by day 24 and subsequently used for
exposure experiments (Rodrigues et al., 2014; De Kock et al., 2011,
2012). Cells were exposed daily to various sub-cytotoxic concentrations
of HCY13 over 72 h (Supplementary Material 4) (Escher et al., 2020;
Neutral Red Uptake Assay SCOPE, 2022). NaVPA and solvent (media)
were positive and negative controls, respectively. We evaluated the
expression of eleven marker genes in lipid metabolism derived from
Verhoeven et al. (2024). The selected genes represent the MIE, such as
PPARG and PPARA (regulate fatty acid metabolism), AHR (regulate
xenobiotic metabolism), and LXRA (cholesterol metabolism). Addition-
ally, we included genes related to downstream KEs like CPTIA (mito-
chondrial p-oxidation), CD36 (Fatty Acid (FA) uptake), SCDI1 (FA
synthesis), and FASN (FA synthesis). We also examined ACOX1 (mito-
chondrial f-oxidation), DGAT2 (FA synthesis), and APOB (Ver-
y-Low-Density-Lipoprotein (VLDL) export), covering key processes in FA
B-oxidation, de novo lipogenesis, and lipid export, respectively. These
selections align with the KEs of steatosis as outlined by the latest AOP
network (Fig. 2). Furthermore, we assessed the accumulation of lipids,
which serves as the phenotypic hallmark and a crucial key event in the
development of steatosis. Details of the gene expression assay, micro-
scopic imaging of neutral lipids, flow cytometric analysis, and triglyc-
eride (TG) quantification are described in Supplementary Material 5.
Microscopic images revealed that rising concentrations of HCY13
were associated with increased neutral lipid accumulation (Fig. 3A).
Flow cytometry semi-quantitatively confirmed this, and a colorimetric
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assay demonstrated a proportional increase in TG levels with higher
HCY13 concentrations (Fig. 3B and C). To understand the mechanism
behind lipid accumulation, we investigated the expression of key genes
involved in lipid metabolism. Exposure to HCY13 resulted in significant
upregulation of PPARG and downregulation of CD36. PPARG, identified
as an MIE in the AOP, is a key regulator of lipid metabolism, promoting
FA uptake, TG synthesis, and lipid storage. The observed HCY13-
mediated upregulation of DGAT2 expression further contributes to
increased TG synthesis and accumulation in hepatocytes, leading to
steatosis (Cheol et al., 2007; Monetti et al., 2007; Villanueva et al.,
2009).

3.7. Biokinetic refinement (population estimation, metabolites)

3.7.1. Population estimation

Liver concentrations were estimated at both individual and popula-
tion levels, using deterministic estimation for individuals (Step 3.4) and
a probabilistic approach for the population level using GastroPlus 9.9’s
population simulator with Monte Carlo simulations. This approach
incorporated physiological and pharmacokinetic variability by gener-
ating virtual subjects with random adjustments to parameters such as
gastrointestinal transit times, pH levels, and pharmacokinetic metrics. A
cohort of 100 individuals (80% female, 20% male, aged 20-70) was
selected using Population Estimates for Age-Related (PEAR) Physiology,
allowing a comprehensive assessment using both compartmental and
customized PBPK models. Under the assumed exposure scenario and
simulation parameters (7 days), the compartmental kinetic model
showed no significant difference in Cpax 1iver Values across the different
liver metabolism settings, with all simulations consistently predicting a
Chnax liver Value of 5 pM. In contrast, the PBPK model showed variability
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Fig. 2. AOP network applied to evaluate the steatogenic potential of HCY13 using mechanistically-anchored assays (indicated with black-colored ring). Key MIEs,
such as the activation of PPARG, PPARA, AHR, and LXRA, are linked to downstream Key Events (KEs), including CD36-mediated fatty acid uptake, FASN and SCD1-
driven fatty acid synthesis, ACOX1 and CPT1A-mediated p-oxidation, and DGAT2-regulated triglyceride synthesis. These molecular and cellular mechanisms
culminate in the Adverse Outcome (AO) of steatosis, characterized by intracellular lipid accumulation and phenotypic hallmarks like inflammation, mitochondrial
disruption, and oxidative stress (Verhoeven et al., 2024). [AOP: Adverse Outcome Pathway, MIEs: Molecular Initiating Events, KEs: Key Events, SIRT1: Sirtuline 1,
LXRA: Liver X receptor alpha, PXR: Pregnane X receptor, PPARG: Peroxisome proliferator-activated receptor gamma, AKT: RAC-alpha serine/threonine-protein
kinase, AMPK: AMP-activated protein kinase, PPARA: Peroxisome proliferator-activated receptor alpha, FXR: Farnesoid x receptor, AHR: Aryl hydrocarbon receptor,
NRF2: Nuclear factor erythroid 2-related factor 2, mTOR: Mechanistic Target Of Rapamycin Kinase.
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Fig. 3. Assessment of lipid accumulation in the hSKP-HPC model upon HCY13 exposure was performed using multiple assays. (A) Microscopy depicts cells treated
with HCY13, a solvent control and the positive control NaVPA. Blue staining represents the nuclei, and green staining indicates neutral lipids (Boeckmans et al.,
2021). (B) Flow cytometry shows increasing Bodipy 493/503 signal intensity with rising HCY13 concentrations. Adjacent, signal intensity is plotted against con-
centrations (n = 4) (Boeckmans et al., 2020). (C) Colorimetric TG quantification reveals a trend of increasing TG concentration at higher HCY13 concentrations (n =
3) (Elabscience.com). (D) Gene expression analysis of HCY13 focuses on key genes representing CD36 (uptake of lipids), APOB (export of lipids), ACOX1 and CPT1A
(beta-oxidation), FASN, SCD1, and DGAT2 (de novo lipogenesis), as well as PPARA, PPARG, LXRA, and AHR (molecular initiating events, or MIEs) highlighting
significant DGAT2, CD36, and PPARG gene up or down-regulation (Rodrigues et al., 2014). For all graphs, statistical significance was determined using one-way
ANOVA and Tukey’s or Dunnett’s tests (*p < 0.05), with error bars representing the variability across three independent runs, each with two technical repli-
cates. [CTL: negative control condition, TG: Triglycerides, AHR: Aryl hydrocarbon receptor, PPARA: Peroxisome proliferator-activated receptor alpha, PPARG:
Peroxisome proliferator-activated receptor gamma, APOB: Apolipoprotein B, ACOX1: Acyl-coenzyme A oxidase 1, CD36: Cluster of differentiation 36, FASN: Fatty
acid synthase, SCD1: Stearoyl-CoA desaturase-1, CPT1A: Carnitine palmitoyltransferase 1A, DGAT2: Diacylglycerol O-acyltransferase 2, LXRA: Liver X recep-

tor alpha.].

among the three liver metabolism settings (hepatocytes, microsomes,
and CYP450 enzymes). Specifically, the PBPK model estimated a Cpax
liver value of 20 pM with both CYP450 enzyme metabolism and micro-
somes, while predicting 10 pM with hepatocytes.

3.7.2. Metabolites refinement

All three metabolites of HCY13 were analyzed for repeated dose liver
toxicity using HESS via the OECD QSAR toolbox. The analysis revealed
that M1 and M2 triggered a flutamide-hepatotoxicity alert, while M3
showed no structural alert by HESS. Per the iTTC principle, potential
health risks of hepatotoxicity-alert metabolites M1 and M2 were
assessed. Assuming the complete metabolism of HCY13 into M1 (74%)
and M2 (26%) within the liver, their plasma concentrations were esti-
mated using GastroPlus 9.9 in both single-object and population models.
The formation of metabolite M1 from 0.11 mg of HCY13 was 0.081 mg,
while that of metabolite M2 was 0.029 mg, based on the respective 74%
and 26% metabolism rates. The results indicated that the maximum
plasma concentrations (Crax plasma) of M1 in the compartmental model
was 3 pM at the individual level and 4 pM at the population level. In
contrast, in the PBPK model, the maximum plasma concentrations were
90 pM at the individual level and 100 pM at the population simulation
level. For M2, the Cpax plasma in the compartmental model was 0.5 pM at
the individual level and 0.8 pM at the population level. According to the
PBPK model, the Cpax plasma for M2 was estimated at 40 pM for
individual-level simulations and 50 pM for population-level simulations.
These concentrations are well below the iTTC threshold of 1 pM, sug-
gesting that neither metabolite M1 nor metabolite M2 is likely to induce
significant biological effects. Therefore, the focus of the risk assessment
from this step was on the parent compound HCY13 (SCCS/1647/22,
2023; Blackburn et al., 2020).

3.8. Points of Departure calculation using the BMC approach (PoDyapny)

The concentration-response curves for TG accumulation and those
showing significant changes in gene expression (DGAT2, PPARG, and
CD36) were analyzed using the Benchmark Concentration (BMC)
approach in PROAST 70.1 software by RIVM (Rijksinstituut voor
Volksgezondheid en Milieu). This method estimates the exposure level
that causes a predefined change, known as the Benchmark Response
(BMR), leveraging full dose-response data and various statistical models
for robust risk estimation. A BMR of 20% was applied for lipid accu-
mulation, corresponding to one standard deviation (SD) of the control
group, aligning with EPA guidelines (US EPA, 2016). For gene expres-
sion, due to higher variability (SD 0.01 to 0.1), a BMR of 50% was set to
capture meaningful changes (Fortin et al., 2023; Fragki et al., 2023).
Each analysis generated a BMC confidence interval, with the lowest
(BMCp) and highest (BMCy) estimates, designating the BMCj, as the
PoDnawum for each biomarker (Middleton et al., 2022). DGAT2 had a BMC,
range of 27.8-67.9 uM, PPARG showed 57.8-92.2 pM, and CD36 ranged
44.8-555.0 pM, indicating varying sensitivities to HCY13. TG accumu-
lation, the most sensitive biomarker, showed the lowest BMC;, of 0.484
pM, emphasizing its central role in the AOP of steatosis (Luckert et al.,
2018; Vinken, 2015; Svingen et al., 2021). This comprehensive analysis

is visually represented using exponential and Hill models in Supple-
mentary Material 6.
Tier 3 - Risk characterization.

3.9. Calculation of Bioactivity-Exposure Ratio (BER) based on lowest
PODNAM

The Bioactivity Exposure Ratio (BER) method assesses safety by
comparing the most sensitive in vitro bioactivity threshold (PoDyawm)
with predicted human exposure levels, specifically Cpax liverr A BER
above 1 indicates that the bioactivity threshold is higher than the esti-
mated internal exposure level, providing a margin of safety. Conversely,
a BER below 1 suggests potential adverse effects, warranting further
investigation (Health Canada, 2021). Using the PoDyam of 0.484 pM
derived from TG accumulation, we calculated the BER by dividing this
value by the Cpax tiver predicted by GastroPlus 9.9. In the compartmental
model, single-object simulation yielded a Cpax liver Value of 4 pM,
resulting in a BER of 121000. Population simulation resulted in a Cpax
liver concentration of 5 pM, with a corresponding BER of 96800. For the
PBPK model, single-object simulation produced a Cpax liver CONCentra-
tion of 15 pM, leading to a BER of 32267. Population-based simulation,
depending on liver metabolism settings, resulted in C payx liver Values of
10 pM and 20 pM, with BER values of 48400 and 24200, respectively. As
all BER values are much higher than 1, no significant risk of liver stea-
tosis is expected under the assumed use conditions of HCY13, based on
the tools and test system applied in the assessment.

3.10. Risk evaluation and uncertainties assessment

Accurately documenting uncertainties in data generation is a critical
step within the NGRA framework. While quantifying uncertainties is
ideal, it is often not feasible. To address this, we employed a qualitative
approach, classifying certainties as Low (L), Medium (M), or High (H) to
capture potential variability and biases in the assessment. Transparent
documentation of in silico and in vitro model limitations is essential for
fostering trust and improving the adoption of NGRA methodologies.
Table 3 provides a qualitative assessment of uncertainties, detailing the
level of certainty in each area, potential reasons for over- or under-
estimations, and the possible impact on overall risk assessment (Dent
et al., 2021; Gosling, 2013). Key areas, such as internal exposure and
biological coverage, have been extensively discussed in the literature,
underscoring the importance of accurate PBPK modeling (Moxon et al.,
2020) and comprehensive biological coverage (Carmichael et al., 2022)
for reliable risk assessments with animal-free approaches.

Although HCY13 is unlikely to induce steatosis under the assumed
use conditions at both individual and population levels, understanding
the key parameters influencing Cpax liver remains crucial for risk
assessment. To evaluate the confidence in our findings, we conducted a
sensitivity analysis on 16 parameters affecting Cpax liver, Systematically
examining how changes in these key model input parameters impact the
model output (EMA, 2018). Our findings identified dose and LogD as
primary drivers, followed by the liver partition coefficient (Kp). Factors
such as Rbp, Fup, and liver clearance significantly contributed to
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Table 3
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Qualitative evaluation of certainty levels encountered in our animal-free NGRA workflow for assessing the liver steatogenic risk of 2.5% (w/w) HCY13 in non-oxidative
hair coloring products. SCCS NoG: Scientific Committee on Consumer Safety Notes of Guidance, PoD: Point of Departure.

Area of uncertainty Level of certainty

Rationale of the over or under-estimation
of the value

Impact on risk
assessment decision

Consumer exposure High:

e Consumer habits and practices derived from SCCS/1647/22

Overestimation (the maximum use is More conservative

likely to be an overestimate)

e Regulatory maximum of 2.5% usage in non-oxidative hair coloring products

Toxicity Medium: Overestimation Increase decision
identification e Based on in silico structural alerts within the applicability domain certainty
o Consideration of functional groups in the assessment
Metabolites Low: Underestimation Decrease decision
identification e Insilico data analysis within the applicability domain certainty

Internal exposure Medium:

Reasonable worst case More conservative

e ADME parameters predicted through in silico tools within the applicability

domain

model output

Crax liver Using deterministic and probabilistic approaches

Range of biomarkers Medium:
assessed e Moderate biological coverage
In vitro tests Medium:

Sensitivity analysis conducted to quantify the influence of input parameters on

Characterization of inter-individual differences in single-object and population

Moderate coverage Increase uncertainty

Protective enough No impact

e Short-term repeated exposure conducted in a human-relevant test system

PoD selection High:

Unlikely to be overestimation Increase confidence

e Four BMCj, ranging from 0.484 to 57.8 pM, with the lowest one selected as the

most sensitive

variations, and individual-specific parameters, particularly body
weight, were crucial in determining variability in Cpax liver-

4. Discussion

Traditional risk assessment relies heavily on animal testing to iden-
tify toxicity thresholds, a method that, despite its comprehensiveness,
faces ethical concerns, high costs, and potential inaccuracies due to
intra- and interspecies differences. With the EU ban on animal testing for
cosmetics, the NGRA approach has emerged as a viable alternative,
focusing on exposure-led, hypothesis-driven, human-relevant, and
harm-prevention principles (Dent et al., 2018; Gwinn et al., 2017;
Browne et al., 2024; Schmeisser et al., 2023). Human-based NAMs are
central to NGRA because they offer more precise data on how chemicals
affect the human body. By integrating into mechanistic frameworks like
AOPs, they help ensure these methods meet the standards of traditional
risk assessments. This alignment strengthens scientific evaluations, ul-
timately aiding regulatory acceptance of these approaches (Bajard et al.,
2023; Hoffmann et al., 2022; Bonneau et al., 2021). Case studies uti-
lizing scientifically valid animal-free methods are essential for gaining
regulatory acceptance of NGRA methodologies by demonstrating their
reliability and effectiveness in protecting human health (Dent et al.,
2021; Rogiers et al., 2020). However, robust strategies are necessary to
address uncertainties in the generated in vitro data and computational
predictions, including ADME and PBPK modeling (Brescia et al., 2023).

HCY13 was selected for this NGRA case study due to its prior iden-
tification as a potentially hepatotoxic cosmetic ingredient from 90-day
repeated-dose animal studies (Gustafson et al., 2020). Flagged four
times for hepatotoxicity by a combination of mechanistic and statistical
in silico tools, this underscores the need for integrating both approaches
to enhance confidence in hazard identification (Teixeira do Amaral
et al., 2014). Despite these flags, the SCCS’s traditional risk assessment
deems HCY13 safe for use as both an oxidative and non-oxidative hair
dye, with a maximum on-head concentration of 2.5% (w/w) (). Selecting
a compound with historical data is essential for validating NGRA, as it
allows comparisons between NAM-based assessments and traditional
risk assessments, demonstrating how to analyze, integrate, and interpret
these data effectively.

This study utilized an OECD 428 in vitro dermal absorption study
under non-oxidative conditions, revealing a dermal bioavailability of
0.13 % of the applied dose (). This corresponds to an internal dose of

0.11 mg, irrespective of the body weight considered in the exposure
scenario. The use of OECD 428 data ensures a reliable margin of safety,
as it is based on actual tested conditions rather than hypothetical worst-
case scenarios. In the absence of in vitro dermal bioavailability data, in
silico tools, such as the Skin Permeation Calculator—which does not
require formulation-specific parameters—, or the TCAT model from
GastroPlus, which relies on formulation-specific data, can be used to
estimate dermal bioavailability (Kuster et al., 2022; Tsakalozou et al.,
2023; Spires, 2020; DumontCoralie and AsturiolDavid; van Osdol et al.,
2024).

Liver concentration estimates for HCY13 required additional ADME
parameters predicted by ADMET Predictor® 11.0, increasing uncer-
tainty in organ-level concentrations (Dulsat et al., 2023; Zhai et al.,
2022; Yamashita and Hashida, 2004). Using GastroPlus® 9.9, we
employed a compartmental model and a customized PBPK model to
estimate liver concentrations, assuming an IV administration of the
calculated internal dose of 0.11 mg for an individual of 75 kg, simulated
over 7 days. While generic kinetic models are generally accurate enough
for organ concentration estimates, PBPK models provide enhanced
flexibility and refinement for NAM-based risk assessments (EPA, 2018;
Punt et al., 2022; Deepika and Kumar, 2023). Probabilistic modeling at
the population level was used to bridge this gap to refine exposure es-
timates from worst-case to more realistic scenarios, enhancing confi-
dence in risk assessment decisions (Tozer et al., 2023; Chiu and Rusyn,
2018). While investigating internal exposure at the population level
increases confidence in risk assessment decision-making (Chiu and
Rusyn, 2018), identifying metabolites via in silico-only methods
heightens uncertainty, as reflected in the low certainty level associated
with the iTTC approach. Increased confidence would be achieved if
metabolites were experimentally determined in vitro, providing more
accurate and reliable data to inform the risk assessment process.
Although shown to be capable of detecting steatotic compounds (Buyl
et al., 2023; Rodrigues et al., 2014, 2016; Boeckmans et al., 2021; Natale
et al., 2018), the limited metabolic capacity of the hSKP-HPC cells used
for bioactivity characterization necessitated reliance on in silico methods
for metabolite identification. This limitation of the test system was
addressed by demonstrating that the predicted plasma concentrations of
the M1 and M2 metabolites were below the accepted iTTC threshold of 1
pM (Ebmeyer et al., 2024; SCCS/1647/22, 2023), indicating no signif-
icant biological effects.

Consequently, the risk assessment focused on the parent compound
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HCY13. To better simulate real-life conditions and further refine the
evaluation, plasma protein binding assays, the use of primary human
hepatocyte cultures, liver S9 fractions, or microsomes, along with
advanced 3D liver models, could be considered (Peeters et al., 2020; N
et al., 2023). Additionally, confirming the absence of bioactivity of the
M1 and M2 metabolites through in vitro testing would also be required.

The study found that HCY13 exposure led to the upregulation of
PPARG and DGAT2, along with the downregulation of CD36, high-
lighting a complex regulatory environment. While PPARG typically ex-
acerbates steatosis (Ratziu et al., 2008; Fernandez-Miranda et al., 2008;
Ahmadian et al., 2013; Tontonoz and Spiegelman, 2008), and DGAT2
enhances TG synthesis (Yen et al., 2008; Cases et al., 1998, 2001), the
downregulation of CD36—usually upregulated by PPARy (Maréchal
et al., 2018; Febbraio et al., 2001)—suggests alternative regulatory
mechanisms, such as post-transcriptional regulation by microRNAs or
HCY13-specific effects that alter normal signaling pathways (Bravo-Ruiz
etal., 2021; Niculite et al., 2019; Varga et al., 2011; Pan et al., 2022; Lee
et al., 2017). Moreover, the downregulation of CD36 is likely an adap-
tive response to intracellular fat accumulation driven by de novo lipo-
genesis, wherein the cell reduces FA uptake to prevent further lipid
overload. The response may have differed at earlier time points,
potentially exhibiting higher CD36 expression. This interplay likely
drives the lipid accumulation observed, contributing to the steatogenic
phenotype despite the altered PPARy-CD36 relationship. Future studies
could explore earlier time points, like 8 h post-exposure, to capture MIE
dynamics and clarify the initial regulatory responses to HCY13. This
would deepen understanding of early gene expression changes and the
mechanisms contributing to steatosis. However, the 72-h findings
robustly establish the key regulatory changes linked to HCY13 exposure,
providing a solid foundation for risk assessment.

A notable strength of this case study was using the BMC approach
across significantly affected biomarkers at both the gene expression and
functional levels, particularly TG accumulation—a hallmark of steatosis.
Identifying the most sensitive biomarker with the lowest BMC for
PoDnaMm from functional data enhances confidence in the risk assessment
(Sand et al., 2006; Yasuhiko et al., 2022), as this approach captures
biologically significant effects beyond gene expression changes alone
(Burden et al., 2021; Crump et al., 2010).

The overall risk assessment is based on a comparison between the
maximum internal liver concentration (Cpax liver) and the PoDyawms,
derived from the nominal concentration in culture medium. The use of
the nominal concentration is justified by the physicochemical properties
of HCY13. It is known that parameters such as volatility, solubility,
hydrophobicity, and binding to plastic can significantly influence a
compound’s in vitro distribution (Nicol et al., 2024). Among these, the
octanol/water partition coefficient (log P,/) is a key determinant, as
chemicals with a high log P,/ (>4) tend to significantly bind to plastic,
reducing their bioavailable concentration in in vitro assays (Henneberger
et al., 2021; Nicol et al., 2024). For HCY13, this concern is minimal,
given its experimentally measured log P, of 2.54 (). Moreover, HCY13
has a very low vapor pressure (Table 2) and a negligible Henry’s Law
constant (1.54e-5 Pa-m3/mol, calculated using HENRYWIN v3.21 from
EpiSuite, EPA), indicating minimal evaporation. Collectively, these
physicochemical characteristics of HCY13 suggest that it remains pre-
dominantly in the culture medium, resulting in an actual concentration
(Cfree) that closely approximates the nominal concentration (Cpominal)
(Proenca et al., 2021). An even more precise assessment would involve
using the intracellular concentration (Cce;) from the in vitro system, as it
better reflects the biologically effective dose. Estimating C.e would,
however, require the integration of advanced in vitro dosimetry models
that account for cellular uptake, binding, and distribution (Bouhifd
et al., 2010). Alternatively, the PoDyam could be compared to predicted
concentrations in the plasma supplying the liver (Ciax plasma) rather than
the Cpax liver (Nicol et al., 2024; Magurany et al., 2023).

A key aspect of NGRA is distinguishing between adaptive and
adverse toxicological responses. Steatosis, while not a disease per se, is
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associated with broader liver toxicity due to lipid accumulation in he-
patocytes, which can impair liver function. The NGRA approach in this
study estimates bioactivity thresholds that are typically lower and more
conservative than adversity thresholds derived from animal studies that
measure apical endpoints (Dent et al., 2018; Paul Friedman et al., 2020).
The PoDyam for deriving BERs was based on a functional biomarker
assessed after short-term repeated exposure in a human-relevant in vitro
model. This resulted in a range of significantly high BERs, indicating a
substantial margin of safety. A high BER suggests that the bioactivity
threshold is well above the estimated human exposure, reducing the
need to distinguish between adaptation and adversity. However, when
BER values are close to 1, further mechanistic investigation is necessary
to determine if observed bioactivity may lead to adverse health effects.
In such cases, enhancing the test system’s biological coverage—for
example, by testing mitochondrial beta-oxidation, mitochondrial
disruption, or ER stress, as outlined in the AOP network by Verhoeven
et al. (2024)—is essential. This helps to understand the mechanistic
involvement of the system better and accurately assess potential risks
(Dent et al., 2021; Middleton et al., 2022; Schmeisser et al., 2023;
Magurany et al., 2023; Berridge et al., 2024).

This case study employed a WoE approach to assess the MoA,
providing a robust, biologically-based framework for evaluating sys-
temic toxicants (Simon et al., 2014; Clewell, 2005; Determining Modes
Of Action for, 1999). Our results are consistent with traditional
animal-based hazard and risk assessment, which deemed HCY13 safe at
a maximum on-head concentration of 2.5% (w/w) (). Importantly,
traditional studies did not identify the liver as a target organ in rats after
90-day oral exposure to HCY13. In humans, the primary enzymes
involved in the metabolism of HCY13 are CYP1A2 and CYP3A4. While
these enzymes have varying metabolic capacity between humans and
laboratory animals (Hammer et al., 2021; Abass et al., 2023), no
species-specific variation in risk of liver steatosis is found for HCY13.

5. Conclusion

This ab initio NGRA of HCY13 for liver steatogenic risk adhered to a
protective, conservative approach, gradually refining towards real-
world scenarios using probabilistic models and considering the actual
versus nominal concentrations in in vitro assessments. NAMs provided
robust insights into exposure and bioactivity, achieving an overall me-
dium level of certainty. Our findings indicate that HCY13 is unlikely to
present significant steatogenic liver toxicity risks under the assumed use
conditions, based on the tools and test system applied in the assessment.
Continued development and implementation of NAMs are expected to
strengthen confidence in non-animal safety assessments and reinforce
their increasing role in regulatory decision-making. While there is room
for further refinement, this case study underscores the practical appli-
cability of NAMs within a tiered NGRA framework.
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