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Abstract
Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high 
number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceu-
tical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on 
animals. Using the metabolically competent human  HepaRG™ cell line and toxicogenomics approaches, we have developed 
an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 
12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations 
as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene clas-
sifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular 
processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known nega-
tive test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested 
to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered 
positive, the results showed that combining  HepaRG™ cells with a genotoxin-specific qPCR array can improve (geno)toxico-
logical hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds 
for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human 
safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.
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FAM  6-carboxyfluorescein
FDR  False discovery rate
HBM  Hydroxybenzomorpholine
HCA  Hierarchical cluster analysis
HKG  Housekeeping genes
MAN  d-mannitol
MAP  m-aminophenol
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MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
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NAC  No amplification control
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NAP  1-naphthol
NIF  Nifedipine
NNK  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
NTC  No template control
OECD  Organisation for economic co-operation and 

development
PAM  Prediction analysis of micorarrays
pCA  p-chloroaniline
PCA  Principal component analysis
RIN  RNA integrity number
SCCS  Scientific Committee on Consumer Safety
SDF  Sodium diclofenac
SOR  Sorbitol
SVM  Support vector machine
TAMRA  Tetramethylrhodamine
TOL  Tolbutamide
TRI  Triclosan
VIN  Vinblastine sulfate
WHO  World Health Organization
ZID  Zidovudine

Introduction

Genotoxicity is considered as one of the most important tox-
icological endpoints and testing for it is a prerequisite in the 
hazard assessment of every chemical entity; including indus-
trial chemicals, food additives, pharmaceuticals, cosmetics, 
veterinary products, etc. (Corvi et al. 2013). Current regu-
latory strategies to investigate the potential genotoxicity of 
a compound comprise, in a first tier, of a battery of in vitro 
tests, i.e., a bacterial mutagenicity test (also referred to as the 
Ames test) and an in vitro micronucleus test (MNvit) (COM 
2011; Kirkland et al. 2011; Corvi et al. 2013; SCCS 2016). 

The battery approach allows covering the three important 
mechanisms of genotoxicity, namely, mutagenicity, clasto-
genicity, and aneugenicity, the latter two being structural and 
numerical changes at the chromosome level, respectively. 
In most cases, a positive result in one of the in vitro tests 
triggers in vivo follow-up, to investigate the corresponding 
endpoint of the positive in vitro result (thus mutagenicity, 
clastogenicity and/or aneugenicity) (Corvi et al. 2013). In 
the context of the European cosmetic regulation 1223/2009, 
however, in vivo testing is no longer allowed (EC 2009). 
This poses an enormous problem as the in vitro battery is 
known to produce a high number of false positives, implying 
a positive result in the in vitro but not in the in vivo follow-
up genotoxicity tests (Kirkland et al. 2005; Ates et al. 2014). 
Consequently, many potentially safe cosmetic compounds 
will be banned and chemicals used in other sectors will need 
to undergo in vivo testing needlessly.

To save time and resources and to avoid the use of ani-
mals, several strategies are being considered to optimize 
the genotoxicity hazard assessment process. For instance, 
several changes have been made to the protocols of the exist-
ing Organisation for Economic Co-operation and Develop-
ment (OECD) validated in vitro genotoxicity tests to reduce 
the number of false positives. Furthermore, implementing 
computational (i.e., in silico) tools is also considered in a 
first step (Teixeira do Amaral et al. 2014; Ates et al. 2016). 
However, to date, most of these in silico tools are built on 
Ames test results, as such predicting the induction of gene 
mutations without providing information on possible clas-
togenic or aneugenic effects of the compounds (Bakhtyari 
et al. 2013; Teixeira do Amaral et al. 2014; Ates et al. 2016).

A promising approach involves the implementation of 
gene expression or transcriptome analysis into an inte-
grated testing strategy, allowing a judgment based on 
mechanistic data that can be used in a weight-of-evidence 
strategy. Several research groups have suggested such so-
called gene signatures to discriminate between genotoxic 
and non-genotoxic chemicals. These can be based on both 
in vivo and in vitro exposure of the animals/cell systems 
to the model compounds. For instance, Lee et al. (2013) 
could identify genotoxic hepatocarcinogens in vivo in rat 
with a list of 170 differentially expressed genes. Similarly, 
Suenaga et al. (2013) were able to discriminate genotoxic 
hepatocarcinogens from non-genotoxic hepatocarcinogens 
and non-hepatocarcinogens in rat liver based on 16 or 10 
genes, depending on the compound exposure duration, 4 or 
48 h, respectively, but their training set comprised only 2 
genotoxic compounds. Also using 2 genotoxic compounds, 
Watanabe et al. identified 51 candidate genes from mice 
liver to discriminate between genotoxic and non-genotoxic 
compounds (Watanabe et al. 2009). More recently, a simi-
lar scenario was used by Li et al. (2015), who developed 
a classifier based on 14 genotoxic and 14 non-genotoxic 
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compounds using the human TK6 cell line. With a 65-gene 
list, they were able to reach an accuracy of 100% (based on 
3 test compounds). Although promising, these approaches 
have a number of disadvantages: some of the classifiers 
are built via in vivo experiments and thus involve animals. 
These scenarios are also based on a limited set of test com-
pounds, lacking to cover different mechanisms of geno-
toxicity. As far as the in vitro classifiers are concerned, 
the cell types used are often not relevant for the human 
situation (Mathijs et al. 2010; Rieswijk et al. 2016) and/
or not entirely metabolically competent. They require an 
additional external metabolic system (Boehme et al. 2011; 
Buick et al. 2015; Li et al. 2015), which would also imply 
a second-test protocol. In addition, the practical imple-
mentation of transcriptomics has not yet found its way 
into routine testing despite its recommendation by differ-
ent expert groups (Corvi et al. 2013; Zeiger et al. 2015; 
SCCS 2016). The reluctance might be related to the fact 
that not every lab is equipped with a microarray/RNAse-
quencing platform and the data analysis and interpretation 
remain challenging.

Therefore, in this paper, to the best of our knowledge, it 
is for the first time that a microarray-derived gene list, based 
on the metabolically competent human HepaRG™ cell line, 
has been translated into a qPCR array, suitable for routine 
genotoxicity testing. Hereto, an existing classifier previously 
developed by Doktorova et al. (2013) was enriched with data 
from additional genotoxic and non-genotoxic compounds. 
Indeed, this original classifier, intended to predict genotoxic 
carcinogenicity, was based on data from a limited number 
of genotoxic carcinogens with comparable modes of action, 
i.e., induction of bulky adducts and alkylation of DNA. This 
classifier was later extended (Doktorova et al. 2014b), but 
was still intended to discriminate between genotoxic car-
cinogens, non-genotoxic carcinogens, and non-carcinogens. 
To specifically address genotoxicity, we have excluded some 
of the carcinogenic gene expression data from the Doktorova 
et al. (2014b) results, to avoid bias towards bulky adduct 
formation and DNA alkylation and generated a more bal-
anced and genotoxicity-specific classifier. For the genera-
tion of our new classifier, genotoxic reference compounds 
displaying various modes of action were selected including a 
cross linker, a radical generator causing DNA strand breaks, 
a DNA repair activator, a tubulin polymerization inhibitor, 
and a base analogue. In a first phase, the classification capac-
ity of the genotoxicity classifier was tested with a set of 
4 genotoxic and 4 non-genotoxic compounds. In a second 
phase, the new classifier was used to develop a qPCR array. 
The classification capacity of the developed qPCR array was 
tested using the same 4 genotoxic and 4 non-genotoxic test 
compounds and an additional set of 4 test compounds: 2 with 
a clear genotoxic or non-genotoxic profile and 2 compounds 
with debatable genotoxicity outcomes.

As for every newly developed assay, to gain more con-
fidence, more compounds need to be tested. However, this 
study describes the development of a novel assay and a 
proof-of-concept on how this assay might perform. The 
authors do not claim validation as this is beyond the scope 
of the manuscript. The general goal is to offer a possible 
solution to the debate that already exists for years in the field 
of genotoxicity of how to overcome false positive results. 
This could be done by introducing, in a weight-of-evidence 
approach, of mechanistic qPCR data. As such we hope to 
spark more interest of genetic toxicologists in applying this 
technology or considering a similar approach, which might 
eventually lead to increased confidence in and practical 
application of gene expression profiling in genotoxicity as 
more compounds get tested.

Materials and methods

Selection of reference and test compounds

Reference and test compounds were selected based on their 
genotoxic or non-genotoxic profile as found in multiple 
peer reviewed reference works or expert opinions such as 
the publically available opinions of the Scientific Com-
mittee on Consumer Safety (SCCS). The SCCS is charged 
with the safety assessment of certain cosmetic ingredients, 
namely those intended for the Annexes of the European Cos-
metic Regulation 1223/2009. For these cosmetic ingredients 
(e.g., colorants, preservatives, and UV filters), some concern 
exists for human health. The SCCS’ published opinions con-
tain valuable toxicological information and are accessible 
via: https ://ec.europ a.eu/healt h/scien tific _commi ttees /consu 
mer_safet y/opini ons_en.

To be designated a genotoxin, the compound must have 
been proven positive in at least one test of the classical 
in vitro genotoxicity test battery [e.g., Ames test, mam-
malian gene mutation test, in vitro chromosome aberration 
test (CAvit), and in vitro micronucleus test] and in at least 
1 in vivo genotoxicity test (e.g., mammalian erythrocyte 
micronucleus test and mammalian bone marrow chromo-
some aberration test). To test whether the  HepaRG™ cell 
line can detect genotoxic metabolites, we added several pro-
genotoxins, i.e., compounds that require metabolization to 
exert their genotoxic properties.

For the non-genotoxic group, the applicability domain 
of the compounds was added to represent a broader chemi-
cal space. A non-genotoxin is considered a compound that 
shows to be negative in the classical in vitro genotoxicity test 
battery. In addition, compounds with a false positive in vitro 
profile were added to the classifier, as advised by Kirkland 
et al. (2016). Finally, to validate the performance and classi-
fication capacity of the qPCR array, 5 in vivo genotoxins and 

https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions_en
https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions_en
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5 in vivo non-genotoxins were selected. Hereto, the same 
selection criteria as for the classifier were applied. In addi-
tion, 2 compounds for which so far equivocal genotoxicity 
data are available were subjected to the qPCR array. As such, 
test compounds can be subdivided into three groups:

“Clear” in vivo genotoxins: compounds with undisputable 
evidence regarding their in vivo genotoxic profile in mam-
mals: chloramphenicol (CHF), 2,4-diaminotoluene (DAT), 
ethyl methanesulphonate (EMS), 1-ethyl-1-nitrosourea 
(ENU), and etoposide (ETO).

“Clear” in vivo non-genotoxins: compounds with a clear 
in vivo negative outcome in mammals: anthranilic acid 
(ANT), basic orange (BOR), climbazole (CLI,) 4-chlorore-
sorcinol (CLR), and melatonin (MELA).

“Doubtful” compounds with debatable genotoxicity 
results p-choloraniline (pCA) and m-aminophenol (MAP): 
Kirkland et  al. (2016) grouped pCA as genotoxic. An 
assessment of the World Health Organization (WHO) led 
to the conclusion that even though pCA is possibly geno-
toxic, results are sometimes conflicting, and in the WHO 
assessment, no conclusion on the in vivo genotoxicity of 
pCA was made, in spite of a positive in vivo micronucleus 
(MNviv) test result. By choosing the latter as test compound, 
mechanistic-based predictions can support the positivity or 
negativity of the compound. MAP shows negative results in 
the MNviv, but is positive in the Ames test and the CAvit 
and MNvit (Boehncke et al. 2003; SCCS 2006). In addition, 
this compound is an isomer of a direct metabolite of pCA, 
namely p-aminophenol (Boehncke et al. 2003).

Tables 1, 2 provide an overview of the reference com-
pounds that were used to generate the original classifier of 
Doktorova et al. (2013), the reference compounds added 
to generate the new, enriched, classifier, and the test com-
pounds to test the new classifier (test compounds phase 1) 
and the qPCR array (test compounds phase 1 and 2). Pro-
genotoxins are further specified in Table 1.

Cell exposure and cytotoxicity assessment

Cell exposure and cytotoxicity assessment were conducted 
as previously described (Doktorova et  al. 2013, 2014a, 
2014b). Briefly, cryopreserved differentiated HepaRG™ 
cells were purchased from Biopredic International and culti-
vated according to the manufacturer’s protocol. To determine 
the low cytotoxic concentration IC10 (reducing cell viability 
by 10%), after 7 days of cultivation, the cells were exposed 
for 72 h, with repeated exposure every 24 h as described 
(Doktorova et al. 2013), to the selected compounds and the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) test was carried out (n = 3). The evaluation of 
the dose-range responses and the respective IC10 values 
were calculated by using  Masterplex® software. IC10 con-
centrations are mentioned in Tables 1 and 2.

Transcriptomics sample preparation

To generate the gene expression signatures, the HepaRG™ 
cells were exposed to the selected compounds for a period 
of 72 h, with repeated exposure every 24 h, at IC10 con-
centrations, as described (Doktorova et al. 2013). Samples 
for RNA isolation were prepared by removing the cell cul-
ture medium and collecting the cells in lysis RLT buffer 
supplemented with β-mercapthoethanol (QIAshredder 
Kit; Qiagen; Product number: 79654). Total RNA extrac-
tion (RNeasy Mini Kit; Qiagen; Product number: 74106), 
including a DNase digestion step, was done according to the 
manufacturer’s instructions. Quality control [Agilent 2001 
Bioanalyzer (RNA integrity number (RIN) > 7)] and micro-
array chip hybridization using Affymetrix U133 Plus 2.0 
GeneChip were performed according to the standard proce-
dures. All microarray chips were further subjected to quality 
control including hybridization and overall signal quality 
assessment, presence of artifacts and DNA degradation. The 
quality of the microarray raw data was also checked using 
Expression Console  (Affymetrix®). Only when quality con-
trol showed acceptance and no visual artifacts or signs of 
DNA degradation were detected, data were further analyzed. 
All experiments were performed in triplicates.

Microarray data analysis and gene list generation

The raw microarray data were re-annotated via Ensembl 
ID, followed by normalization using the Robust Multiar-
ray Average method. This resulted in 20,111 probe sets for 
further analysis. The probe sets were subjected to 3 differ-
ent statistical approaches to end up with reliable gene rank-
ing lists. Following statistical approaches were applied: (1) 
limma analysis; (2) leave-one-out Welch t test; and (3) fold 
change and false discovery rate (FDR) pre-selection. The 
analyses were performed using R, version 3.1.2.

1. As an input for the limma analysis, the treatment versus 
control log2 ratios per compound were used. The com-
pounds were separated into two groups: genotoxic and 
non-genotoxic, and the genes were ranked in order of 
evidence for differential expression. The limma analysis 
was performed using the available library in R, version 
3.1.2 (Phipson et al. 2016). The FDR, to correct for mul-
tiple comparisons, was set at 0.001.

2. The leave-one-out Welch t test, which aimed to eliminate 
compound specific effects, was performed between the 
genotoxic and non-genotoxic group by repeatedly leav-
ing out one compound. The p values were adjusted for 
multiple testing and the FDR was set at 0.05. The over-
lap of the resulting 24 gene lists was taken for the final 
gene selection.
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Table 1  List of tested in vivo genotoxic compounds

NC new classifier, OC original classifier, pro-gtx pro-genotoxin; requires metabolic activation, TCp1 test compound phase 1 used for the classi-
fication analysis and the validation of the genotoxin-specific qPCR array, TCp2 test compound phase 2 used to test the performance of the qPCR 
array
a Maximum solubility

Abbreviation Compound CAS number In vitro genotoxicity In vivo 
genotox-
icity

Main mechanism of 
action

IC10 (µM) Annotation

Ames MNvit/CAvit

2NF 2-nitrofluorene (Vinken 
et al. 2008)

607-57-8 + + + Bulky adduct formation 18 OC

AFB (pro-gtx) aflatoxin B1 (Vinken 
et al. 2008; Kirkland 
et al. 2016)

1162-65-8 + + + Bulky adduct formation 2.5 OC

B[α]P (pro-gtx) benzo[α]pyrene (Vinken 
et al. 2008; Kirkland 
et al. 2016)

50-32-8 + + + Polycyclic aromatic 
hydrocarbon, bulky 
adduct formation

5 OC

CYC (pro-gtx) cyclophosphamide 
(Vinken et al. 2008; 
Kirkland et al. 2016)

50-18-0 + + + Alkylating agent 700 OC

DMN (pro-gtx) dimethylnitrosamine 
(Kirkland et al. 2016)

62-75-9 + + + Alkylating agent 720 OC

NNK (pro-gtx) 4-(methylnitrosamino)-
1-(3-pyridyl)-1-bu-
tanone (Vinken et al. 
2008)

64091-91-4 + + + Bulky adduct formation 7500 OC

BLE bleomycin sulfate 
(Miller 1991; Mozda-
rani and Saberi 1994; 
Kirkland et al. 2008)

9041-93-4 + + + Radical generator caus-
ing DNA strand breaks 
(radiomimetic)

41.5 NC

CdCl2 cadmium chloride (Kirk-
land et al. 2016)

10108-64-2 – + + DNA repair inactivator, 
cell cycle inducer, p53 
inhibitor

2.6 NC

CIS cisplatin (Kirkland et al. 
2016)

15663-27-1 + + + Cross-linking agent 16.7 NC

MMS methyl methanesulpho-
nate (Kirkland et al. 
2016)

66-27-3 + + + N7 alkylation, replica-
tion fork impairment

243.3 NC

VIN vinblastine sulfate (Kirk-
land et al. 2016)

143-67-9 – + + tubulin polymerization 
inhibitor

42.5 NC

ZID zidovudine (Kirkland 
et al. 2016)

30516-87-1 + + + Antimetabolite, nucleo-
side analogue

6666a NC

CHF chloramphenicol (Kirk-
land and Speit 2008)

56-75-7 – + + Clastogen that binds to 
DNA

1350 TCp1

DAT (pro-gtx) 2,4-diaminotoluene 
(Kirkland et al. 2016)

95-80-7 + + + DNA adduct formation 4400a TCp1

EMS ethyl methanesulphonate 
(Miller 1991; Aubrecht 
and Caba 2005; Kam-
ber et al. 2009)

62-50-0 + + + Alkylating agent 3701 TCp2

ENU 1-ethyl-1-nitrosourea 
(Kirkland et al. 2016)

759-73-9 + + + Alkylating agent 2784 TCp1

ETO etoposide (Kirkland 
et al. 2016)

33419-42-0 + + + Topoisomerase II inhibi-
tor

30 TCp1

pCA p-chloroaniline 
(Boehncke et al. 2003; 
Kirkland et al. 2016)

106-47-8 + + + Unknown 2009 TCp2
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3. An additional pre-selection of genes was done based on 
fold changes of treatment versus control deregulation 
in combination with FDR (i.e. Twofold up- or down-
regulation in comparison to the respective control and 
FDR < 0.01). Compounds belonging to the same toxic 
class (either genotoxic or non-genotoxic) were compared 
within the group considering the direction of deregula-
tion (up- or down-regulation). Only genes present in the 

gene lists of at least 3 compounds within the same toxic 
class were kept.

Finally, the results of the 3 methods were compared and 
only genes selected by each of the 3 statistical approaches 
were considered trustable and as such were used in the next 
analysis. To identify the top genotoxin-specific genes that 
can discriminate between the genotoxic and non-genotoxic 

Table 2  List of tested in vivo non-genotoxic compounds

NC new classifier, OC original classifier, TCp1 test compound phase 1 used for the classification analysis and the validation of the genotoxin-
specific qPCR array, TCp2 test compound phase 2 used to test the performance of the qPCR array
a Maximum solubility
b No cytotoxicity

Abbreviation Compound CAS number In vitro genotoxicity In vivo 
genotox-
icity

Applicability domain IC10 (µM) Annotation

Ames MNvit/CAvit

CND clonidine (Vinken et al. 
2008)

4205-90-7 – – – Drug/α2 adrenergic 
agonist

0.1 OC

MAN d-mannitol (Vinken et al. 
2008; Kirkland et al. 
2016)

69-65-8 – – – Sweetener 375 OC

NIF nifedipine (Vinken et al. 
2008)

21829-25-4 – – – Drug/antihypertensive 40 OC

SDF sodium diclofenac 
(Vinken et al. 2008)

15307-79-6 – – – Non-steroidal anti-inflam-
matory drug

50 OC

TOL tolbutamide (Vinken et al. 
2008)

64-77-7 – – – Drug/hypoglycemic 
potassium channel 
blocker

2000 OC

TRI triclosan (SCCP 2008a) 3380-34-5 – + – Cosmetic preservative 22 OC
AMP ampicillin trihydrate 

(Kirkland et al. 2016)
7177-48-2 – – – Drug/beta-lactam anti-

biotic
900a NC

CAP caprolactam (Greene et al. 
1979; Hastwell et al. 
2006)

105-60-2 – – – Synthetic polymer 10,000b NC

HBM hydroxybenzomorpholine 
(SCCP 2005)

26021-57-8 + – – Oxidative hair dye 1105 NC

NaCl sodium chloride (Hastwell 
et al. 2006)

7647-14-5 – – – Condiment/food preserva-
tive

10,000a NC

NAP 1-naphthol (SCCP 2008b) 90-15-3 – + – Oxidative hair dye/ 
insecticide

497 NC

SOR sorbitol (Pottenger et al. 
2007)

50-70-4 – – – Sweetener/sugar alcohol 10,000b NC

ANT anthranilic acid (Kirkland 
et al. 2016)

118-92-3 – + – Intermediate in azo dyes 
and saccharin produc-
tion

4388 TCp2

BOR basic orange 31 (SCCS 
2010a)

97404-02-9 + – – (Oxidative) hair dye 
component

17.5 TCp1

CLI climbazole (SCCP 2008c) 38083-17-9 – – – Antifungal agent 210 TCp1
CLR 4-chlororesorcinol (SCCS 

2010b)
95-88-5 – + – Oxidative hair dye com-

ponent
570 TCp1

MAP m-aminophenol (SCCS 
2006)

591-27-5 + + – Oxidative hair dye com-
ponent

5439 TCp1

MELA melamine (Kirkland et al. 
2016)

108-78-1 – – – Additive in resins, plasti-
cizers, paints

1350* TCp2
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compounds, the overlapping model was subjected to “predic-
tion analysis for microarrays” (PAM). This is a tool that uses 
the nearest shrunken centroid method and takes the aver-
age gene expression for each gene in each class divided by 
the within-class standard deviation for that gene. The main 
advantage is a reduction of the “noise” genes (Tibshirani 
et al. 2002). The ultimate goal was to develop a singleplex 
qPCR array in a 96-well plate design. Hereto, the 84 genes 
that resulted in the best compound prediction were selected 
for further analyses.

Classification analysis and pathway analysis

To check the classification accuracy of the generated list 
of 84 genes, the support vector machine (SVM) algorithm 
was applied. The selected test compounds can be found in 
Tables 1 and 2 (test compounds phase 1). The classifiers 
were trained with the leave-one-out method. For further clas-
sification of the test compounds, the tuned model (e.g. ker-
nel= “linear”, gamma = 0.00001, cost = 10) was used. Fur-
thermore, Pearson/Ward hierarchical cluster analysis (HCA) 
and principle component analysis (PCA) were performed 
based on the log2 fold changes. For the pathway analysis, the 
Panther classification system was applied (Mi et al. 2017).

qPCR array development: primer design 
and optimization

In the first step of the qPCR array development, hydroly-
sis (TaqMan) primers, with 6-carboxyfluorescein (FAM) 
as fluorophore and tetramethylrhodamine (TAMRA) as 
quencher, were designed and optimized. The design was 
carried out using the  PrimerQuest® tool (Integrated DNA 
Technologies). Each qPCR array consists of 5 housekeep-
ing genes (HKG), a no template control (NTC) with  H2O as 
input sample, a no amplification control (NAC) with RNA 
as input sample, a positive control, a negative control, and 
the 84 test genes. Initial focus was the selection of appro-
priate HKG. Ten well-known and described HKG for the 
 HepaRG™ cell line (Ceelen et al. 2011) were selected and 
tested. Of these the top 5 were further used for the qPCR 
array. The selection was done using the GeNorm software 
(Vandesompele et al. 2002). All primers were checked for 
secondary formations (e.g., hairpins) and similarity of the 
sequences to the gene of interest. Furthermore, the efficiency 
of each primer pair was tested by individual qPCRs. Only 
primer pairs resulting in efficiencies between 90 and 110% 
were selected for further analysis. In addition, primer pairs 
resulting in Cq values below 28 and R2 ≥ 0.98 were pre-
ferred. For both the HKG and the genes of interest, cDNA 
samples of  HepaRG™ cells exposed to compounds that were 
also used to build the classifier (data not shown) have been 
used (n = 3).

qPCR

RNA concentrations and quality of the RNA samples were 
determined using Nanodrop 2000C (Thermo Scientific). Per 
sample, 10 µg (total volume of 200 µl) cDNA was synthe-
sized using the iScript cDNA Synthesis Kit (BioRad). On 
the qPCR plate, 2 µl (0.05 µg/µl) purified cDNA  (GenElute™ 
PCR Clean-Up Kit, Sigma) was used in a total reaction mix 
of 20 µl per well (master mix:  TaqMan® Gene Expression 
Master Mix, Applied  Biosystems™). The qPCR plates were 
run according to the following protocol: 0.20 min at 95 °C; 
0.01 min at 95 °C; 0.20 min at 60 °C (40 cycles). SVM 
classification analysis was performed as described above on 
the log2 fold changes, calculated using the  2(−ΔΔCq) method. 
Normalization of the mRNA expression was done against 
the geometric means of the mRNA expression levels of the 
5 reference genes.

Testing of the qPCR array

The optimized hydrolysis primers were spotted in the wells 
of a 96-well qPCR plate (done by Integrated DNA Tech-
nologies). The performance of the resulting qPCR array was 
tested as described above by a total of 12 test compounds 
(test compounds of phases 1 and 2, Tables 1, 2). All experi-
ments were performed in triplicate. Material and methods 
for cell exposure, cytotoxicity assessment, and RNA extrac-
tion are identical to the above-mentioned sections.

Results

Generating a gene classifier to discriminate 
between genotoxins and non‑genotoxins

To generate a gene classifier that is able to discriminate 
between genotoxic and non-genotoxic compounds, meta-
bolic-competent human  HepaRG™ cells were exposed to 
sub-cytotoxic concentrations (IC10, as measured by the 
MTT test) of 12 genotoxic and 12 non-genotoxic reference 
compounds. Microarrays were performed (n = 3 per refer-
ence compound) and the data were then subjected to three 
different statistical methods (i.e., limma analysis, leave-
one-out Welch t-test and fold change, and FDR rate pre-
selection). The combination of these three strategies for 
gene pre-selection resulted in a first gene list of 322 over-
lapping genes, that are differentially expressed between cells 
exposed to genotoxic and non-genotoxic test compounds, 
as identified by all 3 statistical methods. To evaluate the 
overall performance of this set of genes in distinguishing 
between genotoxic and non-genotoxic compounds, HCA and 
PCA were performed. Both approaches showed that most 
compounds were grouped in the correct class (Fig. 1a, c). 
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However, as the final goal of the project is to create a single-
plex qPCR array (i.e. 96-well format), the 322-gene list was 
subjected to PAM gene ranking, to reduce the total number 
of genes. This analysis resulted in the selection of the top 84 
genes that show the most robust rates of correct classifica-
tion of the reference compounds into the genotoxic or non-
genotoxic group. The HCA and PCA of the reduced gene list 
can be found in Fig. 1b, d. The grouping of the genotoxic 

and non-genotoxic compounds showed similar patterns for 
the 84 genes to what was observed with the larger gene set of 
322 genes which implies that the precision of correct iden-
tification of genotoxic compounds in the minimized set of 
84 genes is maintained.

To identify the biological relevance of these 84 genes 
for chemical-induced genotoxicity, a pathway analysis was 
performed using the Panther classification system. The 

Fig. 1  PCA and HCA of the 332 (a, c) and the 84 (b, d) gene lists 
respectively. In the PC plots, dots show how genotoxic (GTX) com-
pounds are grouped. Triangles represent non-genotoxic (NGTX) 
compounds. AFB aflatoxin B1, AMP ampicillin trihydrate, BAP 
benzo[α]pyrene, BLE bleomycin, CAD cadmium chloride, CAP cap-
rolactam, CIS cisplatin, CND clonidine, CPM cyclophosphamide, 

DMN dimethylnitrosamine, DMO d-mannitol, HBM hydroxyben-
zomorpholine, MMS methyl methanesulphonate, NAP 1-naphthol, 
NCL sodium chloride, NF 2-nitrofluorene, NFE nifedipine, NNK 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, SDF sodium 
diclofenac, SOR sorbitol, TBT tolbutamide, TRI triclozan, VIN vin-
blastine sulfate, ZID zidovudine
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results showed that the “genotoxic fingerprint” consisting 
of 84 genes covers a broad range of pathways, molecular 
functions, biological processes, and protein classes (Figs. 2, 
3, 4, 5). In brief, the p53 pathway is the most represented 
one together with the EGF signaling pathway (Fig. 2). At 
a molecular function level, the Panther classification sys-
tem recognizes 63 genes out of the 84-gene set, which are 
structured in 6 different classes with “binding” and “cata-
lytic activity” being the most expressed ones (Fig. 3). From 
the explored biological processes, the biggest impact is on 
“response to stimuli” and “cellular processes” (Fig. 4). Fur-
ther analysis into the “cellular processes” group reveals that 
cell communication, cell proliferation, and cell cycle are the 
most represented groups (Fig. 5).

Performance of the gene classifier in discriminating 
between genotoxins and non‑genotoxins

To classify a compound into a certain group, the SVM 
algorithm was used. This algorithm provides a probability 
between 0 and 1 for a compound to be genotoxic. A prob-
ability < 0.45 is considered negative and > 0.55 is considered 
positive. Probabilities between 0.45 and 0.55 are marked as 
equivocal.

To test the strength of the classification with the selected 
84 genes, 8 test compounds 4 in vivo positive genotoxins 

(ETO, EMS, CHF, DAT) and 4 in vivo non-genotoxins 
(CLR, BOR, MAP, CLI) were selected and subjected to 
microarray analysis (Tables 1, 2). The results of the SVM 
classification analysis on the microarray data, using the 
84-gene list, showed that 3 of the in vivo non-genotoxins 
were predicted as clearly negative and 3 of the in vivo geno-
toxins were classified as clearly positive. In both groups, 
there was one compound (CLI and CHF) with equivocal 
results and, therefore, was not appointed to either of the 
groups (Table 3). The classification results of the 8 com-
pounds imply a sensitivity (correctly predicted positives) of 
100%, a specificity (correctly predicted negatives) of 75%, 
and, thus, an accuracy (overall correctly predicted) of 87.5%, 
when counting the equivocal results as positive.

Development of the qPCR array and classification 
results

The 84 genes identified in the microarray experiments 
were translated into a qPCR format. Hydrolysis probes 
were designed with FAM and TAMRA as fluorophore and 
quencher, respectively. The optimized primers, including 
those for 5 HKGs, were spotted in a 96-well plate. The 
layout of the developed qPCR plate is depicted in Fig. 6. 
As qPCR positive control and negative control, the highly 
deregulated gene (as seen in our microarray analyses) that 

Fig. 2  Molecular pathways 
associated with the 84 genes 
of the genotoxicity fingerprint. 
Pathway analysis with the 
Panther classification system 
reveals that the genotoxin-spe-
cific fingerprint, consisting of 
84 genes, represents at least 24 
biological pathways. Together 
with its feedback loops, the p53 
pathway is the most represented 
pathway
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encodes for carboxyl ester lipase (Cel) is used as marker. 
cDNA of cells exposed to BLE (positive, genotoxic control) 
and MAN (negative, non-genotoxic control) was added to 
the control wells. It should be noted that cDNA from any 
genotoxic and non-genotoxic reference compound, used to 
build the classifier, can serve as positive control and negative 
control, respectively.

To test the performance of the qPCR array, the same 
experimental conditions were maintained as for the micro-
array experiments. Besides the 8 test compounds that were 
used to test the classification abilities of the 84-gene list 
after the microarray experiments, an additional set of 4 test 
compounds (1 genotoxic, 1 “doubtful” genotoxic, 1 non-gen-
otoxic, 1 “doubtful” non-genotoxic) was included. In total, 
12 test compounds were included to test the performance of 
the qPCR array (5 “clear” genotoxic, 1 “doubtful” genotoxic, 
5 “clear” non-genotoxic, 1 “doubtful” non-genotoxic).

The results of the SVM classification are presented in 
Table 4: 4 (EMS, ETO, DAT, CHF) out of the 5 in vivo gen-
otoxins showed positive in the test, ENU came out equivo-
cal. This implies a sensitivity of 100%, when considering the 
equivocal result as positive. All the 5 non-genotoxic com-
pounds were also negative in the qPCR array. This implies 

a specificity of 100%. Our newly developed assay identified 
the controversial compound pCA as negative, whereas MAP 
showed equivocal results (Table 4).

Discussion

A lot of efforts have been made by the scientific community 
to improve in vitro genotoxicity hazard assessment. A prom-
ising approach involves the implementation of gene expres-
sion or transcriptome analysis into an integrated testing strat-
egy, allowing a judgment based on mechanistic information. 
Several research groups have suggested gene signatures to 
discriminate between genotoxic and non-genotoxic chemi-
cals. These were based on both in vivo and in vitro expo-
sure of the animals/cell systems to the model compounds 
(Watanabe et al. 2009; Mathijs et al. 2010; Boehme et al. 
2011; Suenaga et al. 2013; Lee et al. 2013; Li et al. 2015; 
Williams et al. 2015; Rieswijk et al. 2016). Whereas the 
in vivo-based classifiers are built with a limited set of com-
pounds, still requiring the need of animal experiments, most 
of the in vitro classifiers were often built with cell types not 
relevant to humans (Mathijs et al. 2010; Rieswijk et al. 2016) 

Fig. 3  Pie chart depicting the main molecular functions of the genes 
in the qPCR array genotoxicity fingerprint. Analysis of the 84 genes 
using the Panther classification system to connect molecular func-
tions to genes identifies 63 genes in 6 different classes. The second 

pie chart shows the sub-classes of the “binding” group. Gene ontol-
ogy (GO) annotations are mentioned between brackets and the num-
ber of genes within a certain group are shown
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or metabolically incompetent (human) cells (Boehme et al. 
2011; Buick et al. 2015; Li et al. 2015). In addition, the use 
of microarray data has not found its way into common safety 
assessment strategies. This may be attributed to the equip-
ment needed, at one side, and the complicated data analysis 
and interpretation on the other side.

We claim to overcome the majority of the disadvantages 
that accompany microarray experiments for the purpose 
of safety assessment. To achieve this, we have translated 
a microarray-derived gene list, consisting of 84 genes, 
into a qPCR array. Not only have we generated an easy-to-
perform assay that can be run in every molecular lab with 
basic qPCR equipment, but the design also allows simulta-
neous analysis of 84 genes covering various pathways and 

biological processes in a single run. Indeed, these 84 genes 
were selected using three different statistical tools to assure 
optimal genotoxicity predictions. The choice of reducing our 
initial classifier from 322 genes to 84 genes was to avoid 
overfitting the model to the set of reference compounds, 
as this can lead to reduced accuracy in future predictions 
(Tinker et al. 2006).

The predictions are made by exposing cells at sub-cyto-
toxic concentrations (IC10) of the test compound, assuring 
genotoxic rather than cytotoxic responses. This is another 
important improvement, as many of the existing in vitro 
tools require high cytotoxicity levels, above 50% (Kirkland 
2011; Ates et al. 2014). Biologically, the genes represent dif-
ferent pathways involved in the DNA damage response, cell 

Fig. 4  Biological processes in which the 84 genes of genotoxicity 
fingerprint are involved. The two smaller pie charts show the subdi-
visions of the “response to stimulus” and “cellular process” groups. 

Gene ontology (GO) annotations are mentioned between brackets and 
the number of genes within a certain group is shown
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Fig. 5  Panther classification 
analysis reveals 18 different 
protein classes for the 84 genes. 
Panther protein class (PC) anno-
tations are mentioned between 
brackets

Table 3  Probabilistic classification of non-genotoxic and genotoxic test compounds, based on the 84-gene list after microarray experiments

Probabilities of 0–0.45 are considered negative, 0.55–1 are considered positive, 0.45–0.55 equivocal. Using SVM classification analysis, all 4 
genotoxic test compounds (ETO, EMS, CHF, DAT) are predicted as positive. 3 out of 4 non-genotoxic compounds (CLR, BOR, MAP) are pre-
dicted negative. With a probability of 0.48, CLI is considered equivocal. The stringent criteria which we apply in this study classify equivocal 
results as positive
BOR basic orange, CHF chloramphenicol, CLI climbazole, CLR 4-chlororesorcinol, DAT 2,4-diaminotoluene, EMS ethyl methanesulphonate, 
ETO etoposide, MAP m-aminophenol

Compounds CLR BOR MAP CLI ETO EMS CHF DAT

Prediction 0.17 0.14 0.35 0.48 0.97 0.99 0.46 0.69

Fig. 6  qPCR plate design. 
(HKG, housekeeping genes; 
NTC, no template control; 
NAC, No Amplification control; 
PPC qPCR Positive control; 
PNC, qPCR Negative control)
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communication, several metabolic processes, apoptosis, and 
cell death in general. The fact that all these different path-
ways are represented and that the genes encode for a wide 
variety of proteins such as transcription factors, structural 
proteins, chaperones, transporters, etc., supports the notion 
that it is necessary to test more than one or a few genes 
when assessing the possible genotoxicity of compounds. 
Furthermore, our assay is based on the metabolically com-
petent human-derived  HepaRG™ cells, allowing human-
relevant genotoxicity assessment of the mother compound 
and its metabolites with a single protocol. Indeed, all pro-
genotoxins that were included as reference or test compound 
(Table 1) were correctly classified as being genotoxic. This 
will save time and resources and requires smaller amounts 
of the test compound. The latter is a relevant surplus, as in 
the early stage of compound development the amount of 
compound available may be a limiting factor. In addition, 
it has been shown that the use of rat liver extract (S9), usu-
ally required to test for possible (geno)toxic metabolites, 
can produce false positive results (Kirkland et al. 2007). It 
should, however, be noted that some compounds can exert 

genotoxic effects after intestinal metabolization, which is 
not covered in our test system (or most of the other exist-
ing in vitro genotoxicity tests). We, therefore, like to stress 
that we do not claim to use this assay as a standalone test, 
but as an important part of an integrated testing strategy. 
Case-by-case reasoning and decision-making are needed and 
extensive compound profiling should always be performed 
when (geno)toxicity is being assessed.

By opting hydrolysis (TaqMan) primers, a more specific 
detection of the target genes is assured, in comparison to 
SYBR green-based detection; the latter could lead again to 
false positive results. Hydrolysis primers also have a better 
sensitivity (low number of copies can be detected) than the 
SYBR green counterparts and they are known for their bet-
ter reproducibility (Zhou et al. 2017). These are all impor-
tant features that should allow detection of minor changes 
at the gene level, but also create an easy opportunity for 
upscaling the qPCR array into 384-well systems where 4 
runs (4 × 96-wells) can be combined on 1 plate and even 
less amount of compound will be needed. This has been an 
additional consideration when reducing our gene classifier 
from 322 to 84 genes.

Our genotoxic-specific qPCR array showed 100% speci-
ficity and sensitivity on a modest set of 10 test compounds 
(5 in vivo genotoxins and 5 in vivo non-genotoxins). Addi-
tionally, we were able to provide some mechanistic infor-
mation on compounds with unresolved or questionable 
genotoxicity profiles such as pCA and MAP. pCA gave a 
clear negative result in our test, although classified as in vivo 
genotoxin by Kirkland et al. (2016) and, therefore, recom-
mended as a model test compound for the development and 
validation of in vitro genotoxicity tests. It should be noted 
that the genotoxicity of the compound is, however, under 
debate (Khoury et al. 2013). In fact, a report of the WHO 
summarizing the toxicity of pCA, concludes that the avail-
able data do not allow to make conclusions with respect to 
the genotoxicity of pCA. The positive results for this com-
pound were only found at highly cytotoxic concentrations 
(Boehncke et al. 2003). However, these high levels might 
have been necessary to assure exposure to the bone marrow 
in the MNviv, and consequently, it cannot be ruled out that 
pCA is, indeed, an in vivo genotoxin. The conflicting results 
are again reflected as several well-performing in vitro geno-
toxicity screening tools could not detect pCA as genotoxic 
(Cahill et al. 2004; Mizota et al. 2011; Westerink et al. 2011; 
Hughes et al. 2012; Garcia-Canton et al. 2013; Hendriks 
et al. 2016). Thus, the question remains whether this com-
pound is suitable as test compound for the validation of new 
in vitro genotoxicity assays. MAP [positive in the Ames test, 
MNvit, and in vitro chromosome aberration test (CAvit)], on 
the other hand, was identified as negative by the microarray 
data, but equivocal in the qPCR array. Even though microar-
ray and qPCR are complementary methods, qPCR is often 

Table 4  Probabilistic classification of known non-genotoxic (in vivo 
result negative) and genotoxic (in vivo result positive) test com-
pounds, using SVM classification analysis

Probabilities of 0-0.45 are considered negative, 0.55-1 are considered 
positive, and 0.45–0.55 equivocal. Microarray-based predictions are 
given for comparison, when available. The genotoxic compounds 
EMS, ETO, DAT, and CHF are predicted positive by the qPCR array. 
ENU is equivocal, which is considered positive to apply the most 
stringent criteria in the hazard assessment of a chemical. All non-
genotoxic test compounds showed clear negative predictions. The 
possible genotoxic compounds pCA is predicted negative and its non-
genotoxic metabolite MAP is equivocal and thus positive
ANT anthranilic acid, BOR basic orange, CHF chloramphenicol, CLI 
climbazole, CLR 4-chlororesorcinol, DAT 2,4-diaminotoluene, EMS 
ethyl methanesulphonate, ENU 1-ethyl-1-nitrosourea, ETO etoposide, 
MAP m-aminophenol, MELA melatonin, pca p-chloroaniline, SE 
standard error

Compound In vivo 
results

Probability 
classifica-
tion

SE Test result Microar-
ray pre-
diction

ENU + 0.479 0.04 +/– N/A
EMS + 0.999 0.00 + 0.99
ETO + 0.998 0.00 + 0.97
DAT + 0.927 0.05 + 0.69
CHF + 0.713 0.09 + 0.46
MELA – 0.161 0.09 – N/A
ANT – 0.142 0.02 – N/A
CLR – 0.182 0.08 – 0.17
CLI – 0.318 0.11 – 0.48
BOR – 0.382 0.06 – 0.14
pCA +? 0.009 0.00 – N/A
MAP –? 0.483 0.18 +/– 0.35
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the method of choice to confirm or refute microarray data 
(Provenzano and Mocellin 2007). Therefore, the results in 
this study would support the evidence of pCA being in vitro 
non-genotoxic in sub-cytotoxic concentrations. MAP, on the 
other hand, would indeed seem to be an in vitro genotoxic 
compound even in sub-cytotoxic concentrations.

Even though the developed qPCR array needs further val-
idation with an extended list of compounds, the promising 
results indicate that it can become a valuable addition to the 
in vitro genotoxicity testing strategies. In addition, it should 
be noted that in the present study, no trace compounds, 
impurities, or other complex chemicals such as food contact 
materials or nanoparticles have yet been tested. The merit 
of using a qPCR array in these particular fields might open 
new perspectives as several of the existing, validated in vitro 
genotoxicity assays fail for these specific types of chemicals 
or do not allow high-throughput. Additional investigations 
and, more importantly, practical applications are needed to 
further define the applicability domain of the qPCR array. 
In this study, we could show that it is possible to incor-
porate gene expression profiling in more routinely applied 
qPCR testing. With the animal testing ban in the European 
cosmetic legislation, new doors might open for compounds 
that show positive results in the regulatory in vitro battery, 
known to suffer from a high amount of false positive results. 
In addition, the qPCR array can be equally valuable in other 
sectors where compound development is hampered by exces-
sive, expensive, and time-consuming in vivo testing or where 
development of promising compounds is needlessly stopped 
due to false positive genotoxicity test results.
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